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Abstract

We have witnessed remarkable advances in
LLM reasoning capabilities with the advent of
DeepSeek-R1. However, much of this progress
has been fueled by the abundance of internet ques-
tion–answer (QA) pairs—a major bottleneck go-
ing forward, since such data is limited in scale
and concentrated mainly in domains like mathe-
matics. In contrast, other sciences such as physics
lack sufficient large-scale QA datasets to effec-
tively train reasoning-capable models. In this
work, we show that physics simulators can serve
as a powerful alternative source of supervision
for training LLMs for physical reasoning. We
generate random scenes in physics engines, create
synthetic question–answer pairs from simulated
interactions, and train LLMs using reinforcement
learning on this synthetic data. Our models ex-
hibit zero-shot sim-to-real transfer to real-world
physics benchmarks: for example, training solely
on synthetic simulated data improves performance
on IPhO (International Physics Olympiad) prob-
lems by 5-10 percentage points across model sizes.
These results demonstrate that physics simula-
tors can act as scalable data generators, enabling
LLMs to acquire deep physical reasoning skills
beyond the limitations of internet-scale QA data.

1. Introduction
Reinforcement learning with verifiable rewards (RLVR) has
enabled large language models (LLMs) to cross the thresh-
old from pattern matching to multi-step reasoning. However,
this progress is fundamentally constrained by the availability
of high-quality question–answer (QA) pairs: textbook- and
internet-derived QA corpora are finite, unevenly distributed
across domains, and difficult to scale beyond a few million
examples. As a result, RLVR systems such as DeepSeek-R1
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(DeepSeek-AI et al., 2025) are ultimately bottlenecked not
by model capacity, but by the scarcity of supervision data
(Wu et al., 2025).

This limitation is most visible in the physical sciences.
While mathematics benefits from abundant question–answer
pairs, physics, chemistry, and other empirical sciences lack
comparable large-scale datasets. For example, less than
1% of the 800K QA pairs used in DeepSeek-R1 involve
STEM topics, leading to poor generalization on standard
physics benchmarks. The root issue is that internet QA data
is sparse, unevenly distributed, and not systematically var-
ied, leaving large gaps in the supervision signal required for
scientific reasoning.

Physics engines, on the other hand, encode physical laws
in executable form. Instead of describing phenomena in
text, they compute future states by numerically integrat-
ing systems of ordinary differential equations under con-
straints. This gives them the ability to generate unlimited
trajectories with high-fidelity supervision signals—such as
instantaneous forces, momentum, and energy transfers—
that are rarely captured in static internet corpora. How-
ever, this information is not directly usable by LLMs to
improve their physics problem solving skills: simulator out-
puts are approximate, continuous, forward-time numerical
traces, whereas physics problem solving requires accurate,
inverse, symbolic, and counterfactual reasoning. The chal-
lenge, then, is how to represent simulator-derived physical
information in a way that helps improve an LLM’s physics
problem solving ability.

One potential solution is utilizing physics simulators as
external tools (Schick et al., 2023; Sarch et al., 2025). How-
ever, this approach is non-trivial as it shifts the primary
challenge from physical reasoning to code generation; the
LLM must master complex simulator-specific APIs to model
a problem. Our early experiments with this paradigm were
unsuccessful, as models frequently struggled to produce ex-
ecutable and physically accurate simulation code. Further-
more, many physical phenomena are not natively supported
by simulators, and implementing them requires human-in-
the-loop engineering, which renders this approach unscal-
able. In contrast, we find that our method allows us to
generalize beyond the scope of our simulator (Section 3.6).

To address these limitations, we propose Sim2Reason: a
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Solving Physics Olympiad via Reinforcement Learning on Physics Simulators

framework that transforms the physics simulator into a scal-
able QA generator. Instead of relying on the LLM’s initial
coding capabilities, we procedurally construct diverse phys-
ical systems in the physics simulator and simulate their dy-
namics to automatically generate verified question-answer
pairs. Our pipeline produces three reasoning modes: nu-
meric (state queries), reverse (parameter inference), and
symbolic (closed-form expressions). These systems span a
broad spectrum of classical mechanics, covering the major-
ity of core phenomena encountered in undergraduate and
Olympiad-level physics. The procedural nature of our Do-
main Specific Language (DSL) enables the dynamic compo-
sition of heterogeneous physical scenes—such as combin-
ing pulley systems with rotational dynamics—generating
millions of unique, physically grounded training samples
(Figure 1).

We train LLMs using Reinforcement Learning (RL) on
this synthetic data without incorporating any real-world
physics QA pairs during the post-training phase. Evaluating
our model across multiple rigorous benchmarks—including
IPhO, JEE-Bench, PHYSICS and OlympiadBench—reveals
consistent and meaningful performance gains, showcasing
a robust sim-to-real transfer. We find that quality filtrating
is critical to achieving these gains. For instance, simulator-
generated questions often suffer from degeneracy, where
problems are either trivially easy or computationally in-
tractable. To address this, we implement a question pruning
strategy that filters out these extremes, ensuring training
compute is focused on useful samples that fall within the
LLM’s solvable range.

Our results demonstrate that training solely on Sim2Reason
data improves zero-shot performance on IPhO mechanics
problems by 5–10 percentage points across 3B to 72B model
scales. We observe similar gains on specialized benchmarks
like JEEBench (+17.9% for 32B models) and PHYSICS,
confirming that the model is not merely memorizing sim-
ulator dynamics but is developing a generalized capacity
for multi-step physical reasoning. Furthermore, we find
that the QA pairs generated by our framework serve as an
effective benchmarking tool for foundation models. We
observe a high correlation between model accuracy on our
simulated questions and performance on real-world physics
benchmarks, enabling scalable and automated testing across
specific physical domains. Please refer to our project web-
page for video visualizations from SIM2REASON: https:
//physics-rl.github.io/

2. Method
To train LLMs for physical reasoning, we first generate
synthetic data using a physics simulator and then fine-tune
the LLM on this synthetic data. Using MuJoCo (Todorov
et al., 2012) as our simulator, we generate question–answer

pairs spanning a wide range of physical phenomena, broadly
covering kinematics, rotational mechanics, orbital motion,
variable-mass systems, and basic electromagnetism (e.g.,
a charged particle moving in the presence of time-varying
fields).

The data generation pipeline (Figure 2) consists of 4 stages:

1. Scene Generation: Generating physically meaningful
random scenes

2. Physics Simulation: Simulating scenes to record data

3. QA pair generation: Generating question-answer
pairs from recorded data

4. Data filtration: Deduplicating and filtering degenerate
qa pairs

2.1. Scene Generation

To procedurally generate scenes in a structured and scalable
manner, we design a domain-specific language (DSL) that
isolates physically meaningful axes of randomization from
those that do not fundamentally change the underlying rea-
soning. For example, changing the length of a pulley string
typically does not affect the system’s dynamics, whereas
changing the mass of a suspended block does.

Our DSL consists of three levels of abstraction: scene, entity,
and body. Body is the most fundamental element. Each
body has a name and a predefined set of parameters based
on its type—for instance, the mass of a block or the radius
of a sphere (see Appendix D for details). Additionally, for
each body we define a template MuJoCo XML snippet and
a template string that describes the body and its parameters.

However, bodies cannot be arbitrarily connected—for in-
stance, a mass block can be placed on a prism, but not
vice versa. This motivates the next level of abstraction: an
entity, which consists of a set of bodies connected in a
specific, physically meaningful way. Each entity exposes
well-defined connection points that specify how it can attach
to other entities. We refer to Appendix F for a detailed list
of entities.

The scene is formed by randomly selecting entities and
connecting them. We generate the MuJoCo XML for a
scene by concatenating the XML templates of its entities,
each of which is in turn constructed by composing the XML
templates of its bodies. This design allows us to generate
simulatable scenes at scale without a human in the loop
(Figure 6 in Appendix).

2.2. Physics Simulation

To generate synthetic data, we simulate the generated scenes
in MuJoCo and record key physical quantities for each body.
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time

(a) Simulate a procedurally generated random scene in the Physics Simulator

(b) Record sensor data from the simulator

(c) Procedurally generate scene description

A smooth table is inclined at an angle 0 degrees with the horizontal. There are multiple systems on this table.
In a system called ComplexCollisionPlane.mass-0, a block of mass 2.0 kg s placed at 2.5 m on the table. It is initially 
moving with a velocity of -0.3 m/s.A wall is fixed at 0.0 m on the table. ComplexCollisionPlane.spring_mass-3, 2 blocks 
are placed at 3.0 and 4.0 m on the table. They have masses 1.0 and 1.0 Kg respectively. These blocks  ............

(d) Procedurally generate a random question

(e) Retrieve the answer from the sensor data.

Given the {scene description}, What is the velocity of the 2nd block in spring_mass-3 after 5.44 seconds?

0.8802 m/s

LLM

<think> 
 
To find the magnitude of the velocity of the 
second block in the spring_mass-3 system, we 
need to track the sequence of elastic collisions 
and then solve the internal dynamics of the 
spring-mass system.
1. Initial State and First Collision

We have a block ($m_A = 2.0\text{ kg}$) at $x = 
1.0\text{ m}$ moving at $v_A = 2\text{ m/s}$ 
and a sphere ($m_B = 5\text{ kg}$) at $x = 
2.5\text{ m}$ moving at $v_B = -0.3\text{ m/s}
$.

The time of their collision $t_1$ is found by:

$$1.0 + 2t_1 = 2.5 - 0.3t_1 \implies 2.3t_1 = 1.5 
\implies t_1 \approx 0.6522\text{ s}$$
The position of collision is $x_{coll1} = 1.0 + 
2(0.6522) \approx 2.3043\text{ m}$

…. </think> 
 

<think> 
 
To find the magnitude of the velocity of the 
second block in the spring_mass-3 system at $t 
= 5.44$ seconds, we need to track the sequence 
of elastic collisions and the subsequent 
oscillatory motion of the spring-mass system.
1. Analysis of the Initial Setup

The table is horizontal ($\theta = 0^\circ$), so 
gravity does not affect the motion along the 
table's surface.

• Block (mass-0): $m_0 = 2.0$ kg, $x_0 = 
1.0$ m, $v_0 = 2$ m/s.

• Sphere (sphere-1): $m_s = 5.0$ kg, $x_s = 
2.5$ m, $v_s = -0.3$ m/s.

• Spring-Mass System (spring_mass-3): 
$m_1 = 1.0$ kg (at $3.0$ m), $m_2 = 1.0$

…. </think> 
 

1.71 m/s0.88 m/s

(f) RL training using generated QA data 

Figure 1. Overview of the SIM2REASON (Sim2Reason) pipeline. From left to right: we procedurally generate diverse physics scenes
using a DSL, (a) compile them into MuJoCo simulations, and (b) record physically grounded state/force traces. (c–e) From these traces
we automatically instantiate multiple types of question–answer pairs (numeric, reverse, and symbolic), and apply filtering to remove
degenerate/shortcut questions and unstable simulation segments. (f) Finally, we post-train an LLM with RLVR on the resulting synthetic
data and evaluate zero-shot sim-to-real transfer on real-world benchmarks (e.g., IPhO and other physics/math datasets).

We categorize bodies into either masses (proprioceptive
quantities) or strings (tension and length); Appendix E lists
all recorded quantities.

However, the recorded traces can contain unmodeled
transitions—such as a block colliding with a pulley or falling
off a plane—that lead to unpredictable dynamics. We detect
these events by comparing the sliding-window mean and
standard deviation. More specifically,

µt = mean{aj}t+w
j=t ,

σt = std{aj}t+w
j=t ,

truncate at t if max
i∈{t,...,t+w}

|ai − µt| ≥ k σt.

(1)

Here, a denotes the recorded acceleration of a body, and k
is a threshold hyperparameter controlling how aggressively
we flag spikes (smaller k is more sensitive to spikes). We
use k = 5 during data generation.

An example of this pruning procedure is shown in Fig-
ure 7 in Appendix. We also extend the simulator to support
variable-mass systems, Newtonian gravitation, and colli-
sions with a specified coefficient of restitution.

2.3. QA Pair Generation

For a given simulatable scene, we convert its recorded time-
series data into natural-language question–answer pairs.
We first generate a scene description by concatenating the

natural-language descriptions of its entities (themselves
composed from body descriptions). We also describe inter-
entity connections using reusable template strings for each
connection mode.

To form a question, we randomly select a body, a recorded
physical quantity, and a timestep. We generate questions in
three ways, each requiring a different style of reasoning:

• Numeric questions: Forward reasoning, e.g., “What
is the velocity of block A at time 3 s?”

• Reverse questions: Inverse reasoning, where one
scene parameter is masked (e.g., x), e.g., “What is
the mass of block A if its velocity after 3 s is 5 m/s?”

• Symbolic questions: Symbolic reasoning, where all
numeric parameters are replaced by symbols, e.g.,
“What is the velocity of block A after time t?”

2.4. Data Filtration

We filter the generated data to remove shortcut solutions, i.e.,
cases where a model can ignore part of the scene (or collapse
a multi-body interaction into an oversimplified system) and
still obtain the correct numeric answer (Figure 3). This is
undesirable for RL training because it can reward incorrect
physical reasoning and reinforce approximations.

To detect shortcut-solvable questions, we construct con-
trolled “ablations” of each scene:
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Scene Generation Simulation QA Generation Data Filter

 '<name>',pulls the string attached to 
it with a constant force of

In a system called '<name>', <2> 
blocks are stacked on … with slope 
<15> degrees … blocks are <9> kg in 
bottom-to-top order.

'<name>' pulls the string attached to it 
with a constant velocity of <vx>1 m/s 

In a system called '<name>', a block 
of mass <3> kg rests on a plane 
inclined at an angle of <45> degrees.

…

Random 
Selection Scene 

Connector

(Entity,Template) 
Pool

Attributes 
Recording

Numeric

A ?

Reverse

? B
Ablation

Symbolic

A = x        B = ? Accepted 
QA Pair

Discarded
QA PairMuJoCo

Figure 2. Overview of our synthetic data-generation pipeline. We procedurally generate simulatable scenes by randomly selecting
and connecting DSL entities (Section 2.1), then simulate each scene in MuJoCo and record time-series data of key physical attributes
(Section 2.2). From these traces we craft natural-language QA pairs in three formats (Section 2.3)-numeric, reverse, symbolic-and finally
deduplicate and filter degenerate/shortcut-solvable questions before RL post-training (Section 2.4).

What is the acceleration of ?

Figure 3. Illustration of a shortcut solution. The correct answer
depends on the coupled motion of the block m and wedge M , but
weaker models may collapse the dotted region into a single body
of mass M +m and still match the numeric answer. We filter QA
pairs whose answers are invariant to such approximations.

• Entity-removal ablations: We treat a scene as a graph
of entities and connections, generate sub-scenes by
removing one entity at a time while preserving the
connectivity of the remaining graph, and re-simulate
these sub-scenes.

• Joint-removal ablations: We generate variants in
which individual joints/constraints are replaced by
rigid “glued” components.

For a given question, if the ground-truth answer is un-
changed between the original scene and any ablated variant,
we discard the QA pair. This prunes questions whose solu-
tion does not actually depend on the purported multi-entity
dynamics and can be solved by approximating the scene
with an oversimplified setup.

2.5. RL Training

We post-train the LLM using reinforcement learning with
verifiable rewards (RLVR). For each prompt x, we sample
a group of G responses {yi}Gi=1 from the current policy
πθ(· | x) and assign a scalar reward R(x, yi) based on exact
final-answer correctness. We optimize Group Sequence
Policy Optimization (GSPO)(Zheng et al., 2025a) with a
reference policy πref (the base Instruct model).

As is common in group-based RL, we compute group-
relative advantages by normalizing rewards within each
group (subtracting the group mean and dividing by the
group standard deviation). The GSPO loss is a clipped,
sequence-level policy-gradient objective:

LGSPO(θ) = −Ex,{yi}

[
1
G

∑G
i=1 min

(
ρiÂi, clip(ρi, 1− ϵ, 1 + ϵ)Âi

)]
(2)

where ρi = πθ(yi | x)/πref(yi | x).

Finally, we incorporate DAPO-style dynamic sampling to
improve training efficiency in sparse-reward settings. Con-
cretely, if a sampled prompt yields near-zero reward stan-
dard deviation across the group (leading to near-zero advan-
tages), we resample additional prompts until the batch is
filled with informative groups.(Yu et al., 2025)

3. Experiments
We evaluate our proposed SIM2REASON pipeline by post-
training LLMs of various sizes with reinforcement learning
(RL) on our synthetic dataset. We then test these resulting
models on real-world reasoning benchmarks.
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Datasets Evaluation: Below we describe the datasets we
use for training and evaluation.

• Synthetic (SIM2REASON): We generate training ques-
tions on-the-fly using the proposed SIM2REASON
pipeline; unless stated otherwise, all RL runs use this
synthetic distribution. We use numeric QA mode as
described in Section 2.3, for all our training runs, we
compare against symbolic and reverse QA mode in our
ablation section.

Concretely, we train for 200 RL steps with batch size
32, so the model observes approximately 6,400 distinct
question–answer pairs during post-training.

• International Physics Olympiad (IPhO): We evaluate
zero-shot transfer on a curated set of mechanics problems
from the International Physics Olympiad. We collect and
filter problems from 1967–2025 to form an evaluation set
of 77 questions. For problems with diagrams, we pro-
vide figure captions generated from the original problem
context using GPT-4o.

• HCV (Concepts of Physics): We evaluate on a set of
512 mechanics problems curated from H. C. Verma’s
Concepts of Physics (Vol.1). For problems with diagrams,
we provide figure captions generated from the original
problem context using GPT-4o.(Verma, 2017)

• JEEBench: A collection of 515 problems from JEE–
Advanced (India), covering physics, chemistry, and math-
ematics, and designed to stress multi-step quantitative
reasoning. In our evaluation, we restrict to text-only me-
chanics questions to avoid confounding gains from visual
understanding. We follow the official evaluation pipeline
from (Arora et al., 2023)

• OlympiadBench: A benchmark of high-difficulty STEM
problems sourced from international and national science
olympiads. Similar to other real-world evaluations in this
section, we focus on text-only mechanics questions when
applicable and report exact-match accuracy. We follow
the official evaluation pipeline from (He et al., 2024)

• PHYSICS: A textbook-derived physics benchmark span-
ning a range of difficulty levels; only the test set is released
publicly. We evaluate on the released test split and restrict
to mechanics-related, text-only questions. We follow the
official evaluation pipeline from (Zheng et al., 2025b)

• AIME 2025: We use problems from the 2025 Amer-
ican Invitational Mathematics Examination (AIME) as
an out-of-domain math reasoning check. We evalu-
ate using the LightEval (Habib et al., 2023) pipeline
and report mean@8 (mean accuracy over 8 sampled re-
sponses).(AIME, 2025)
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Figure 4. Validation accuracy (green) versus average response
length (blue, in tokens) for Qwen3-30B-Instruct over RL post-
training steps. Longer responses are strongly associated with
higher validation accuracy, suggesting that post-training encour-
ages more extensive intermediate reasoning.

• MATH 500: A 500-problem subset of the Hendrycks
MATH dataset, which contains competition-style prob-
lems with final numeric or symbolic answers. We report
exact-match accuracy.(Hendrycks et al., 2021)

Models: We evaluate LLMs across multiple model sizes.
Specifically, we use Qwen2.5 Instruct checkpoints at 3B,
7B, 14B, 32B and 72B , and additionally include Qwen3-
30B-Instruct as a stronger baseline. In our training setup,
Qwen3-30B tends to produce substantially longer responses
(˜8k tokens on average) than comparably sized Qwen2.5
models (˜1.5k tokens), which significantly increases RL
training cost. Consequently, due to limited compute, we
train Qwen3-30B for 100 RL steps, while all Qwen2.5 mod-
els are trained for 200 RL steps.

3.1. Zero-shot generalization of SIM2REASON

In this section, we evaluate the generalization ability of our
SIM2REASON pipeline. We post-train LLMs of different
sizes (3B–72B) using RL on our synthetic mechanics ques-
tions, and then evaluate the resulting checkpoints on held-
out synthetic splits and multiple real-world benchmarks.

Table 1 shows consistent improvements on IPhO
Mechanics—up to 7 percentage points across model sizes—
despite the fact that the post-training stage uses no real-
world physics QA data. Notably, the gains persist even for
stronger baselines: for example, Qwen3-30B-Instruct im-
proves by +4.4 points on IPhO, suggesting that our synthetic
RL signal provides benefits beyond what is already captured
by scale and instruction tuning (Figure 4).

Although our default RL training distribution uses numeric
questions, we find that Qwen2.5 models also improve on
other reasoning modes (reverse and symbolic) on the syn-
thetic evaluation splits (Table 1). This indicates that the
post-trained models are learning reusable physical reason-
ing patterns, rather than overfitting to a single question
template.

To further test sim-to-real transfer, Table 2 evaluates
Qwen2.5-32B on additional real-world physics benchmarks

5
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Table 1. Performance of Qwen2.5 family Instruct models before and after RL on synthetic datasets, expressed in percentage. Improvements
are shown in parentheses.

Model Synthetic Numeric Synthetic Symbolic HCV IPhO Mechanics

Qwen3-30B 14.8% 8.8% 53.9% 35.6%
+ RL (synthetic) 17.4% (+2.6%) 8.0% (-0.8%) 59.0% (+5.1%) 40.0% (+4.4%)

Qwen2.5-72B 8.5% 4.8% 56.1% 20.3%
+ RL (synthetic) 18.1% (+9.6%) 10.4% (+5.6%) 52.2% (-3.9%) 25.6% (+5.3%)

Qwen2.5-32B 8.9% 5.6% 50.6% 19.8%
+ RL (synthetic) 21.9% (+13.0%) 10.4% (+4.8%) 53.9% (+3.3%) 25.2% (+5.4%)

Qwen2.5-14B 7.0% 5.6% 49.3% 16.07%
+ RL (synthetic) 17.0% (+10.0%) 10.4% (+4.8%) 51.7% (+2.4%) 20.45% (+4.4%)

Qwen2.5-7B 5.2% 6.4% 45.0% 10.7%
+ RL (synthetic) 17.1% (+11.9%) 10.4% (+4.0%) 42.6% (-2.4%) 12.0% (+1.3%)

Qwen2.5-3B 4.8% 3.2% 31.9% -%
+ RL (synthetic) 12.5% (+7.7%) 9.4% (+6.2%) 39.5% (+7.6%) 13.15% (+7.5%)

(JEEBench, OlympiadBench, and PHYSICS) as well as out-
of-domain math benchmarks (AIME 2025 and MATH 500).
We observe consistent gains across all benchmarks. The
largest improvement is on JEEBench (+17.9 points), which
contains many mechanics questions closely aligned with the
phenomena covered by our simulator. We also observe im-
provements on AIME and MATH, suggesting that training
for physics reasoning also strengthens underlying algebraic
and multi-step quantitative skills.

Table 2. Mean accuracy of Qwen 2.5 32B Instruct on other real
world benchmarks.

Benchmark Model Score

JEEBench Qwen2.5 32B 34.38%
+ RL (synthetic) 52.28%( +17.90%)

PHYSICS Qwen2.5 32B 39.42%
+ RL (synthetic) 43.09%( +3.67%)

OlympiadBench Qwen2.5 32B 41.41%
+ RL (synthetic) 44.53%( +3.12%)

AIME 25 Qwen2.5 32B 10.83%
+ RL (synthetic) 12.5%( +1.67%)

MATH 500 Qwen2.5 32B 78.4%
+ RL (synthetic) 82.8%( +4.4%)

In this section, we take a deeper look at the improvements
and broader implications of our framework. We first analyze
the choice of our post-training training strategy (RL, SFT)
and data composition, exploring how our synthetic data
compares with existing post-training datasets such as DAPO

17k to improve reasoning. Subsequently, we propose an
alternate use case of our framework: using the simulator
itself as a scalable benchmarking tool. Finally, we perform
a qualitative analysis of the model’s outputs to categorize
the specific axes of improvement.

3.2. Training Strategies for SIM2REASON

SIM2REASON can generate an effectively unbounded num-
ber of verified QA pairs from a physics simulator. A central
question is therefore how to distill this simulator-derived
supervision into the LLM in a way that (i) improves reason-
ing, and (ii) preserves the base model’s general capabilities,
. We investigate two widely used post-training paradigms:
(i) supervised fine-tuning (SFT) on high-quality demonstra-
tions, and (ii) reinforcement learning with verifiable rewards
(RLVR).

Table 3. Comparison of RL vs. SFT on 32B model performance.

Model (Qwen 32B) Synthetic IPhO

Baseline 14.0% 19.8%
+ SFT 16.0% (+2.0%) 15.9% (-3.9%)
+ RL (Ours) 32.0% (+18.0%) 25.2% (+5.4%)

SFT. We construct SFT data of 200,000 question-answer
pairs by rejection-sampling solutions from strong teacher
models (GPT-4, o3, and o4-mini), and then fine-tune the
LLM on the resulting trajectories. As shown in Table 3, SFT
yields only modest in-distribution gains on our synthetic
evaluation and substantially degrades out-of-distribution
performance (e.g., -3.9% on IPhO Mechanics). We hypoth-
esize that this is driven by a large KL shift from the base
Instruct model, which can induce catastrophic forgetting
during post-training. This failure mode is consistent with
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Table 4. Ablations on (a) QA format and (b) Data filtration

(a) Improvements by each QA
format during RL post-training.

Model (Qwen 3B) IPhO

Baseline 5.68%
+ RL (reverse) 5.84%
+ RL (symbolic) 7.46%
+ RL (numeric) 13.15%

(b) Effect of shortcut-solution
filtering.

Model (Qwen 3B) IPhO

Baseline 5.68%
+ RL (no filter) 7.14%
+ RL ( filtered) 13.15%

recent analyses showing that overly aggressive post-training
updates can erase general reasoning skills when the opti-
mization signal is narrow or distribution-shifted.(Shenfeld
et al., 2025)

RLVR. In contrast, RLVR directly optimizes task success
using a sparse, verifiable reward (final-answer correctness),
allowing the model to explore diverse solution strategies
while staying closer to the base policy. Empirically, RLVR
provides robust improvements both in-distribution (syn-
thetic) and out-of-distribution (IPhO and other real-world
benchmarks), suggesting it is a more reliable way to distill
simulator-derived supervision into generalizable reasoning
skills.

3.3. Ablations: QA format and data filtration

We ablate two design choices in our synthetic RL pipeline:
(i) the question format used during post-training (Sec-
tion 2.3), and (ii) whether we apply the shortcut-solution
filtering described in Section 2.4. Unless stated otherwise,
we report IPhO Mechanics accuracy for Qwen2.5-3B In-
struct.

QA format: We compare training with numeric questions
(our default) against reverse and symbolic variants. Table 4a
shows that numeric QA yields the strongest transfer to IPhO.

Shortcut filtering: We also test the impact of removing
shortcut-solvable questions via scene ablations. As shown
in Table 4b, shortcut filtering is critical: training without
filtering yields substantially smaller gains than training on
the filtered numeric distribution.

3.4. Comparison to a real-world dataset

A natural question is how simulator-generated training data
compares to widely used, real-world post-training datasets.
Unfortunately, there are currently no large-scale, publicly
available physics reasoning post-training datasets that are
directly comparable to our setting. We therefore compare
against a strong, public math RL dataset: DAPO-17K, re-
leased alongside the DAPO open-source RL system.(Yu
et al., 2025)

DAPO-17K consists of 17K curated mathematical problems

designed to support outcome-reward RL training at scale.

As shown in Table 5, training on our SIM2REASON syn-
thetic mechanics data yields substantially better IPhO trans-
fer than training on DAPO-17K alone, despite DAPO-17K
being an order of magnitude larger than our 1K-sample
synthetic subset in this ablation. This suggests that domain-
aligned simulator data provides a higher-signal training dis-
tribution for physics reasoning than generic math-only cor-
pora.

Finally, combining DAPO-17K with our synthetic data pro-
vides a further (albeit smaller) improvement over DAPO-
17K alone.

Table 5. Comparision with real-world dataset.

Model (Qwen 3B) IPhO

Baseline 5.68
+ RL DAPO-17K (Real) 9.98
+ RL Mixed: DAPO-17K (Real) + Synthetic 10.35
+ RL Synthetic (Ours) 13.15

3.5. Simulator as a benchmark

Beyond serving as a source of post-training supervision,
SIM2REASON also enables a scalable benchmarking work-
flow for scientific reasoning. Measuring progress in physics
reasoning is challenging because high-quality real-world
evaluation sets are small, expensive to curate, and slow
to expand (e.g., olympiad problems require expert selec-
tion and careful verification). In contrast, our simulator-
driven pipeline can generate large numbers of mechanically
grounded questions with automatically verifiable answers,
enabling rapid iteration and fine-grained diagnostics across
specific phenomena (e.g., pulleys, collisions, springs, rota-
tion).

A key question is whether simulator accuracy predicts real-
world reasoning. Figure 8 suggests it does: across mod-
els, synthetic accuracy correlates strongly with IPhO me-
chanics accuracy (Spearman ρ = 0.975). This makes
simulator-based evaluation a useful proxy for comparing
models/ablations and for diagnosing strengths by stratifying
results by scene type and physical quantity.

3.6. Analysis of Capabilities

We next analyze what the model learns from simulator-based
RL and whether those gains extend beyond the simulator
distribution. We focus on three complementary lenses: (i)
robustness to harder questions, (ii) generalization to prob-
lems that cannot be directly simulated in our environment,
and (iii) qualitative changes in solution behavior.
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JEE Advanced 2017 Paper 2

QUESTION

A rocket is launched normal to the surface of the Earth, away
from the Sun, along the line joining the Sun and the Earth.

Parameters:
• Mass of Sun = 300, 000× Mass of Earth
• Distance = 25, 000× Radius of Earth
• Escape Velocity (Earth) = 11.2 km/s

The minimum initial velocity (vS ) in km/s required for the rocket
to be able to leave the Sun-Earth system is closest to:
[A] 22 [B] 42 [C] 62 [D] 72

BASE MODEL

Step 1: Calculate
Escape Velocity from
Sun
Using the given
ratios
(MSun = 3 × 105ME,
D = 2.5 × 104RE):

vsun =
√

2GMSun/R
vsun ≈ 54.78 km/s
ERROR:

Correct ≈ 39 km/s

Step 2: Calculate
Total Velocity
To escape both
bodies, we sum the
required velocities:

vtotal = vearth + vsun
vtotal =
11.2 + 54.78 km/s

ERROR:

Linear addition

vtotal ≈ 65.98 km/s

Conclusion:
The calculated value
(66 km/s) is closest
to option [C].

Predicted Answer:
[C] 62 km/s
(Incorrect)

RL-FINETUNED MODEL

Step 1: Analyze the
System
We need to escape the
combined potential of
Earth and Sun.
- Earth Escape
Velocity: 11.2 km/s
- Sun Escape Velocity
(at Earth’s
distance): ≈ 42 km/s
(based on standard
solar data)

Step 2: Determine
Effective Velocity
Since the Sun’s
gravitational well is
significantly deeper
than Earth’s, the
escape velocity is
dominated by the Sun.

vtotal =
√

v2
sun + v2

earth

Correct:

Energy Addition

Because
vsun(42) ≫ vearth(11),
the result is
approximately vsun.
vtotal ≈ 42 km/s

Conclusion:
The minimum velocity
is dictated by the
Sun’s gravity.

Predicted Answer:
[B] 42 km/s (Correct)

Figure 5. LLM answers before (left) and after (right) RL fine-
tuning. Question adapted from JEE Advanced 2017 Paper 2.

Coverage Across Difficulty Levels. We evaluate robust-
ness across difficulty tiers in the PHYSICS benchmark. As
shown in Table 6, RL post-training on SIM2REASON im-
proves performance at every tier.

Gains are modest at lower tiers (e.g., +2.8% at High School
and Below) and largest at the Postgraduate tier (+5.6%), sug-
gesting simulator-based RL particularly strengthens harder
multi-step quantitative reasoning. We use Gemini 2.5 Flash
as a verifier.

Table 6. Detailed performance across difficulty levels on the
PHYSICS benchmark.

Category Qwen 32B + RL (synthetic)

High School and Below 65.5% 68.3% (+2.8%)
High School Olympiad 52.9% 54.0% (+1.1%)
Undergraduate 47.9% 48.4% (+0.5%)
Postgraduate 32.2% 37.8% (+5.6%)

Generalization Beyond Simulation. A key question is
whether the gains of Sim2Reason are limited to scenarios
were explicitly model in MuJoCo. We find that improve-
ments transfer to problems that are not directly covered by
our current library of entities. In principle, many such prob-
lems could be simulated, but doing so can require bespoke
entity design and scene construction tailored to that specific
setting (e.g., adding specialized celestial-body interactions).

For example, the problem in Figure 5 involves a rocket
taking off from a planet in the presence of a star. Accurately
simulating this setup would require implementing additional
entities logic with this exact case in mind. Nonetheless,
the base Qwen2.5-32B-Instruct model fails to solve the
problem in any of eight trials, whereas after RL on our
synthetic data the success rate increases to 50% (4/8). This
suggests that the post-trained model is learning transferable
abstractions (e.g., formulating constraints and bookkeeping
forces/energy), rather than merely overfitting to simulated
scenes.

Qualitative Examples. To concretely illustrate these gains,
we present comparative case studies across real-world prob-
lems. We observe improvements along several axes: arith-
metic (reducing calculation errors; Figures 27, 28), physical
reasoning (mapping text to correct equations and boundary
conditions; Figures 5, 25, 26), and strategic planning (e.g.,
unit conversions and intermediate checks; Figure 24).

4. Conclusion
We presented SIM2REASON, a simulator-driven pipeline
that procedurally generates diverse physics scenes, converts
simulated traces into verifiable QA pairs, and post-trains
LLMs with RLVR. Across multiple real-world benchmarks
(e.g., IPhO mechanics), models trained only on synthetic
simulator supervision show consistent zero-shot sim-to-real
gains, suggesting simulators are a scalable source of reason-
ing supervision.

A direct avenue for future work is to combine simulator-
generated data with curated real-world QA to further im-
prove robustness and coverage. More broadly, extending
this approach beyond classical mechanics to other areas of
physics (e.g., E&M, thermodynamics) and to other physical
sciences is a promising direction.
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Impact Statement
This work investigates training language models for physi-
cal reasoning using synthetic question–answer supervision
generated from physics simulators. We expect the primary
positive impact to be improved access to high-quality scien-
tific tutoring and problem-solving tools, and a reduction in
dependence on scraping internet QA data.

Potential risks include misuse of stronger reasoning models
(e.g., to assist in harmful engineering) and over-reliance on
simulator-generated supervision, which may encode mod-
eling assumptions and failure modes that do not hold in
the real world. To mitigate these issues, we emphasize
evaluation on real-world benchmarks, report limitations of
simulator fidelity and coverage, and encourage downstream
deployments to include safeguards, monitoring, and domain-
specific validation.
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A. Related Work
Reinforcement Learning from Verifiable Feedback Recent work has explored Reinforcement Learning from Verifiable
Rewards (RLVR) as a scalable alternative to human preference annotation for training reasoning-capable language models
(DeepSeek-AI et al., 2025; Yu et al., 2025; Shao et al., 2024; Yang et al., 2025a). In RLVR, models are trained using
automatically verifiable signals—such as exact-answer matching, program execution, theorem proving, or symbolic
checks—to provide dense, objective reward signals for complex reasoning tasks (Zhu et al., 2024; Xin et al., 2024; Yang
et al., 2025a). This paradigm has been successfully applied in domains such as mathematics, code generation, and formal
reasoning, where correctness can be algorithmically verified. However, existing RLVR approaches rely on domains with
deterministic and symbolic verification pipelines and are limited by the availability of structured ground truth problems
and answers. In contrast, our work extends the RLVR paradigm to physical reasoning, where supervision is derived from
physics simulation rather than question-answer pairs. By using simulators to generate verifiable outcomes and synthetic QA
supervision, we enable RL-based training of LLMs in domains where formal verification might be infeasible, demonstrating
zero-shot transfer to real-world physics benchmarks such as IPhO.

Symbolic Regression and Digital Simulation Twins Symbolic regression aims to recover interpretable physical laws
from data (Angelis et al., 2023), using methods ranging from genetic programming (Schmidt & Lipson, 2009) to sparse
regression (Brunton et al., 2016) and neural approaches (Udrescu & Tegmark, 2020; Raissi et al., 2019). Recent work also
explores using LLMs to assist equation discovery (Shojaee et al., 2025).

LLM-based “digital twins” use language models as interfaces or decision modules within simulated environments (Yang
et al., 2025b; Amad et al., 2025; Xia et al., 2024; Rasheed et al., 2025). In contrast, we use simulators as supervision to train
LLMs for physical reasoning, including symbolic questions (Section 2.3).

B. Domain-Specific Language and Timestep pruning strategy
We summarize the two additional components used to build training data. Figure 6 shows the YAML-based scene-generation
DSL and an example MuJoCo rendering produced by compiling it to MuJoCo XML, while Figure 7 illustrates our
timestep-pruning heuristic that removes unstable trace suffixes before QA generation.

DSL
scene:
name: "Pulley System"
entities:

- name: "entity_1"
type: "MassWithFixedPulley"
...

- ...
connections:

- entity: "entity_1"...
- ...

Figure 6. Example of our scene-generation DSL (top) and the corresponding MuJoCo-rendered scene produced by compiling the DSL
into MuJoCo XML (bottom). The DSL composes scenes from reusable entities and bodies with explicit connection modes, enabling
scalable procedural generation while restricting randomization to physically meaningful parameters.

C. Additional Results
Figure 8 reports a correlation analysis across models/runs, showing that higher accuracy on our SIM2REASON synthetic
questions tends to coincide with higher accuracy on IPhO mechanics. This supports using the synthetic QA suite as a
lightweight proxy for real-world physics reasoning performance.
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Figure 7. Timestep pruning for simulation traces with unmodelled transitions. Left: MuJoCo scene snapshots at the start and at time 3s.
Right: recorded time-series signals; when a sliding-window deviation criterion flags an outlier (e.g., due to contact between block and
pulley), we keep only the stable prefix (green) and discard the remainder before generating QA pairs.

D. Bodies and their parameters
We define a list of bodies, along with their randomizable parameters.

Body Symbol(s) Description
Mass m Point mass / block mass.
Sphere r, m Sphere radius and mass.
Polygonal prism n, r, h, m Number of sides, circumscribed radius, height, and mass.
Cylinder r, h, m Cylinder radius, height, and mass.
Disc r, m Disc radius and mass.
Bar w, ℓ, h, m Bar width, length, height, and mass.
Hemisphere r, m Hemisphere radius and mass.
Bowl r, hc, t, m Bowl radius, cutting-plane height hc, shell thickness t (if hollow), and mass.
Sphere with spherical hole r, rh, ph, t, m Outer radius r, hole radius rh, hole position ph, shell thickness t (if hollow),

and mass.
Rocket mdry, m0 Dry mass mdry and initial total mass m0.
Triangular prism αL, αR, m Left/right face slopes (angles) and mass.
Plane α Plane slope (incline angle).
Pulley m Pulley mass.
Spring–mass system {ki}, {ℓ0,i}, {xi}, {mi} Spring constants, natural lengths, mass positions, and masses connected by

springs.
Table 7. Bodies used by the DSL and the corresponding randomizable parameters.

E. Recorded physical quantities
During simulation, we log time-series data for each scene to enable question-answer pair generation. We group data into
three categories: mass-related (body state and dynamics), string-related (length/tension), and contact (interaction forces).
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Figure 8. Correlation between accuracy on SIM2REASON synthetic questions and
IPhO mechanics questions.

F. Entities and their Connections
Here, we show a list of entities that we define (Figures 9–23). The randomizable parameters for each entity are visualized in
the figures by their respective mathematical notations. The connection points and modes are also visualized as dotted lines.

mass with fixed pulley consists of a fixed pulley with one side open for connection to other entities (repre-
sented by dotted line), and the other connected to a simple mass system. Below are the 3 variants of mass systems
which are supported by this entity.

ENTITY VISUALIZATION

Figure 9. Mass With Fixed Pulley
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Category Quantity Description
Mass displacement Body displacement / position (in world frame).
Mass com offset Vector from body frame origin to center of mass.
Mass velocity (6D) Linear and angular velocity.
Mass acceleration (6D) Linear and angular acceleration.
Mass mass Body mass.
Mass momentum (6D) Linear and angular momentum.
Mass net force (6D) Net force/torque (consistent with F = ma).
Mass kinetic energy linear Translational kinetic energy.
Mass kinetic energy angular Rotational kinetic energy.
Mass potential energy Gravitational potential energy.
Mass inertia Inertia tensor.
Mass em potential energy Electromagnetic potential energy (when applicable).
Contact normal force Normal contact force at interaction points.
Contact friction force Tangential/frictional contact force.
String length Current string length.
String velocity Rate of change of string length.
String force Tension force.
String stiffness Spring constant (for elastic strings/springs).

Table 8. Physical quantities recorded from MuJoCo for each simulated scene.

mass with movable pulley consists of a movable pulley with both sides connected to one of the variants of
mass with fixed pulley (represented by dotted shapes E1 and E2), and the top is open for connection to other

entities (represented by dotted line).

ENTITY VISUALIZATION

Figure 10. Mass With Movable Pulley

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Solving Physics Olympiad via Reinforcement Learning on Physics Simulators

mass with reverse movable pulley is the reverse variant of mass with movable pulley where the two
connections of the pulley pull it up, whereas in mass with movable pulley the two connections of the pulley
pull it down.

ENTITY VISUALIZATION

Figure 11. Mass With Movable Pulley

two side mass plane consists of a mass on plane which can be connected to other entities on either sides.

ENTITY VISUALIZATION

Figure 12. Two Side Mass Plane

stacked mass plane consists of long mass blocks stacked on top of each other on a plane. Each of these mass
blocks can be connected to other entities on either side.

ENTITY VISUALIZATION

Figure 13. Stacked Mass Plane

15



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Solving Physics Olympiad via Reinforcement Learning on Physics Simulators

directed mass consists of mass block suspended from two fixed pulleys. The other ends of each of these pulleys
can be connected to other entities.

ENTITY VISUALIZATION

Figure 14. Directed mass

mass prism plane consists of a movable inclined plane and two mass blocks on either side of it. These mass
blocks are connected to each other by a string.

ENTITY VISUALIZATION

Figure 15. Mass Prism Plane

mass box plane consists of a large movable mass block and optional mass blocks on either face of it. These mass
blocks are connected to each other by a string.

ENTITY VISUALIZATION

Figure 16. Mass Box Plane
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twoD collision plane consists of a large frictionless plane and a couple of spheres on top it, each given with
some initial velocity.

ENTITY VISUALIZATION

Top View

Figure 17. TwoD Collision Plane

complex collision plane consists of a long frictionless plane and a couple of objects on top it, each given
with some initial velocity. This setup is entirely 1D to lower complexity of the problems. Possible objects are sphere,
block, fixed wall and spring blocks.

ENTITY VISUALIZATION

Top View

Figure 18. Complex Collision Plane
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solar system consists of a stationary star and a couple of planets revolving around it.

ENTITY VISUALIZATION

Figure 19. Solar System

rocket entity consists of a stationary planet and a rocket taking off of the planet. The rocket has a dry mass m0

and initial mass m. It burns fuel to propel itself, losing mass at a rate of µ.

ENTITY VISUALIZATION

Figure 20. Rocket Entity
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rotation entity consists of multiple 3D shapes attached to each other with rigid joints so that they move
together. Additionally, they are attached to a pivot, allowing them to rotate around it due to gravity in a pendulum
motion.

ENTITY VISUALIZATION

pivot

Figure 21. Rotation Entity

rolling entity consists of 3D shapes rolling on an inclined plane. We choose primitive 3D shapes such as
spheres, cylinder and polygon cylinders. Additionally we also randomly cutout a shape from the body-for instance
cutting a smaller sphere from a sphere results in a spherical shell. We automate this by using blender to generate
arbitrary cutout shapes.

ENTITY VISUALIZATION

Figure 22. Rolling Entity
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em entity consists of a moving charged particle in space in the presence of varying Electric (E⃗) and Magnetic
fields (B⃗). These fields vary as a known function of the position, velocity of the particle and time.

ENTITY VISUALIZATION

Top View

Figure 23. Electro Magnetism Entity
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IPhO 2005 Q1

QUESTION

A geosynchronous satellite of mass m is in a circular orbit of radius r0 with velocity v0.

An error causes the engine to fire, providing an instantaneous radial thrust ∆v directed towards Earth. We
characterize this boost by the parameter:

β =
∆v

v0

Task: Calculate the minimum boost parameter βesc needed for the satellite to escape Earth’s gravity.

BASE MODEL

Step 1: Orbital Velocity
v0 =

√
GME/r0

Step 2: Escape Condition
Escape velocity: vesc =

√
2GME/r0

Condition: vafter ≥ vesc

Since the thrust is directed radially
inward, the effective velocity becomes
reduced:
vafter = v0 −∆v

ERROR: Linear subtraction. Fails to
treat velocity as a vector (radial ⊥
tangential).

Step 3: Solve for β√
GM/r − β

√
GM/r ≥

√
2GM/r

(1− β) ≥
√
2

1−
√
2 ≥ β =⇒ β ≈ −0.41

(Model confuses signs and algebra)
β ≥

√
2− 1 ≈ 0.41

Final Answer:

βesc =
√
2− 1 ≈ 0.41 (Incorrect)

RL-FINETUNED MODEL

Step 1: Energy Analysis
Initial Energy: E0 = −GMm/2r0
Escape Velocity needed: vesc =

√
2GM/r0

Step 2: Vector Addition
The kick is radial (∆v), perpendicular
to the orbital velocity (v0). The new
velocity magnitude adds in quadrature:
vnew =

√
v20 + (∆v)2

Step 3: Escape Condition
vnew ≥ vesc√

v20 + (∆v)2 ≥
√
2v0

Substitute ∆v = βv0:√
v20 + β2v20 ≥

√
2v0√

1 + β2 ≥
√
2

Step 4: Solve for β
1 + β2 ≥ 2
β2 ≥ 1 =⇒ β ≥ 1

Final Answer:

βesc = 1 (Correct)

Figure 24. LLM answers before (left) and after (right) RL finetuning. Question adapted from IPhO 2005 Q1 “An Ill Fated Satellite”.
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JEE Advanced 2023 Paper 1

QUESTION

A small mass (m = 0.10 kg) moving with initial speed u = 5.00 m/s collides elastically with a bar (Mass M = 1.00
kg, Length L = 0.20 m) that is pivoted at one end. The collision occurs at a distance L/2 from the pivot.

Parameters:
• m = 0.10 kg; u = 5.00 m/s
• M = 1.00 kg; L = 0.20 m
• Ibar (about pivot) = ML2/3

The velocity of the small mass (v) after the collision is closest to:
[A] 4.30 m/s [B] 5.00 m/s [C] −2.50 m/s [D] 2.15 m/s

BASE MODEL

Step 1: Conservation of Angular
Momentum
Linitial = m · u · (L/2)
Linitial = 0.1× 5.0× 0.1 = 0.005

ERROR: Arithmetic (Should be 0.05)

Lfinal = Ipivotω +mv(L/2)
0.005 = 0.00133ω + 0.005v

Step 2: Conservation of Kinetic Energy
Since collision is elastic, conserve
energy.
KEinitial = 0.5mu2 = 1.25 J

For the bar, we consider both rotation
and translation:
KEbar = 0.5Ipivotω

2 + 0.5Mv2cm

ERROR: Double counting energy

(Using Ipivot already accounts for motion

of COM. Adding linear KE counts twice.)

Step 3: Solve System
The model attempts to fit the values...
finds v ≈ 4.30 m/s, but associates it
with wrong option due to internal
confusion.

Predicted Answer: [B] 5.00 m/s
(Incorrect)

RL-FINETUNED MODEL

Step 1: Conservation of Angular
Momentum
Calculate initial angular momentum
correctly:
Linitial = m · u · (L/2)
Linitial = 0.10× 5.00× 0.10 = 0.05

Lfinal = Ipivotω +mv(L/2)
0.05 = ( 1

3
× 1.0× 0.22)ω + 0.1v(0.1)

0.05 = 0.0133ω + 0.01v

Step 2: Conservation of Kinetic Energy
For a bar pivoting at the end, KE is
purely rotational about pivot:
KEbar = 0.5Ipivotω

2

Equation:
1.25 = 0.05v2 + 0.00665ω2

Step 3: Solve System
From Momentum: v = 5− 1.33ω
Substitute into Energy...
Solving yields ω ≈ 7.0 rad/s.
Substituting ω back to find v:
v = 5− 1.33(7.0) ≈ 4.30 m/s

Conclusion:
Velocity decreases slightly to 4.30 m/s.

Predicted Answer: [A] 4.30 m/s
(Correct)

Figure 25. LLM answers before (left) and after (right) RL finetuning. Question adapted from JEE Advanced 2023 Paper 1.
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IPhO 2012 Q1

QUESTION

A ball is thrown with a fixed initial speed v0 in a homogeneous gravitational field. The x-axis is horizontal, and the
z-axis is vertical (opposing gravity g).

By adjusting the launching angle, the ball can hit any target within a region defined by the parabola: z ≤ z0 − kx2

You can use this fact without proving it. Find the constants z0 and k in terms of v0 and g.

BASE MODEL

Step 1: Write Equations of Motion
The trajectory of a single projectile
is given by:
x = v0 cos(θ)t
z = v0 sin(θ)t− 1

2
gt2

Eliminating t, we get the trajectory
equation:

z = x tan(θ)− gx2

2v2
0 cos2(θ)

Step 2: Match Coefficients
We compare this specific trajectory to
the given boundary equation:
z = z0 − kx2.

To find the constants, we assume the
standard case for maximums, which is
θ = 45◦.
- At 45 degrees, tan(θ) = 1.
- At 45 degrees, cos2(θ) = 0.5.

Step 3: Solve for k
Looking at the x2 term in the
trajectory equation:
Coefficient = g

2v2
0 cos2(θ)

Substitute cos2(45) = 0.5:
k = g

2v2
0 ·0.5

k = g/v20

ERROR: Assumed boundary is defined by
the 45-degree path.

Conclusion:
z0 = v20/(2g)
k = g/v20

Predicted Answer: z0 = v20/2g, k = g/v20
(Incorrect k)

RL-FINETUNED MODEL

Step 1: Analyze the Physical Meaning
The equation z = z0 − kx2 represents the
"Envelope of Safety"|the outer boundary
of all possible trajectories. We are
not looking for one specific path, but
the limits of all paths.

We can find the constants by
identifying two critical edge cases on
this boundary:
1. The maximum possible height (zmax)
where x = 0.
2. The maximum possible range (xmax)
where z = 0.

Step 2: Find z0 (The Peak)
The maximum height is achieved by
throwing the ball straight up (θ = 90◦).
Using energy conservation (mgh = 1

2
mv2):

z0 = v20/(2g)

Step 3: Find k (The Width)
The boundary touches the ground (z = 0)
at the maximum possible range.
We know max range occurs at 45 degrees:
xmax = v20/g

Now, substitute this point
(z = 0, x = v20/g) into the boundary
equation:
0 = z0 − kx2

max

0 =
v2
0

2g
− k(

v2
0
g
)2

Step 4: Solve for k

k
v4
0

g2
=

v2
0

2g

k =
v2
0

2g
· g2

v4
0

k = g

2v2
0

Conclusion:
z0 = v20/(2g)
k = g/(2v20)

Predicted Answer: z0 = v20/2g, k = g/2v20
(Correct)

Figure 26. LLM answers before (left) and after (right) RL finetuning. Question adapted from IPhO 2012 Question 1 “Focus on
sketches”.
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IPhO 2018 Q1

QUESTION

Calculate the dimensionless coefficient ξ for the power P emitted in gravitational waves by a binary system.

Formula:

P =
G

5c5

∑
i,j

(
d3Qij

dt3

)2

= ξ
G

c5
µ2L4Ω6

Given Quadrupole Moments (where k = 2Ω):
Qii =

µL2

2
(ai + bi cos kt) and Qij = µL2

2
cij sin kt (for i ̸= j)

Parameters:
b1 = 1, b2 = −1, b3 = 0; c12 = c21 = 1 (others 0).

The value of ξ is: [A] 1.6 [B] 3.2 [C] 6.4 [D] 12.8

BASE MODEL

Step 1: Compute Third Time Derivatives
We differentiate the quadrupole moments
three times.
Q(t) ∼ 1

2
cos(2Ωt)

First deriv: ∼ 1
2
· (2Ω) = Ω

ERROR: Failed chain rule (missing
factor of 2)

Second deriv: ∼ Ω · (Ω) = Ω2

Third deriv: ∼ Ω2 · (2Ω) = 2Ω3

Resulting Coefficient: A = 2

Step 2: Square and Sum
We square the coefficient found in Step
1.
Square: A2 = 22 = 4

Summing over the non-zero components
(diagonal and off-diagonal contribute
equally):
Sum = 4 (from diagonal) +4 (from
off-diagonal) = 8

Step 3: Apply Formula
P = 1

5
· Sum · (constants)

ξ = 8
5
= 1.6

Predicted Answer: [A] 1.6 (Incorrect)

RL-FINETUNED MODEL

Step 1: Compute Third Time Derivatives
We apply the chain rule consistently
for the third derivative.
Q(t) ∼ 1

2
cos(2Ωt)

First deriv: 1
2
· (−2Ω) sin(2Ωt)

Second deriv: 1
2
· (−4Ω2) cos(2Ωt)

Third deriv: 1
2
· (8Ω3) sin(2Ωt)

Resulting Coefficient: A = 4

Step 2: Square and Sum
We square the coefficient found in Step
1.
Square: A2 = 42 = 16

Summing over the components (using
sin2 +cos2 = 1 identity):
Sum = 16 (from diagonal) +16 (from
off-diagonal) = 32

Step 3: Apply Formula
P = 1

5
· Sum · (constants)

ξ = 32
5

= 6.4

Predicted Answer: [C] 6.4 (Correct)

Figure 27. LLM answers before (left) and after (right) RL finetuning. Question adapted from IPhO 2018 Question 1 “LIGO-
GW150914”.
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IPhO 2013 Q1

QUESTION

A meteoroid from Comet Encke impacted Earth (the Maribo meteorite). Measurements show the meteorite formed
shortly after the solar system’s birth.

In its orbit around the Sun, the minimum and maximum distances between Comet Encke and the Sun are:

amin = 4.95× 1010 m and amax = 6.16× 1011 m

Calculate the orbital period tEncke of Comet Encke. Express the final answer in SI units.

BASE MODEL

Step 1: Formula
Use Kepler’s Third Law:
T 2 = (4π2/GM) · a3

Step 2: Calculate Semi-major Axis
a = (amin + amax)/2
a = (4.95× 1010 + 6.16× 1011)/2
a = 33.275× 1010 m

Step 3: Calculate Period
Using µ = 1.327× 1020:
T 2 = (33.275× 1010)3/1.327× 1020

T 2 = 3.7074× 1033/1.327× 1020

ERROR: Arithmetic. a3 ≈ 3.7 × 1034 (Order
of magnitude off).

T 2 ≈ 2.794× 1013 s2

T ≈ 5.285× 106 s
T ≈ 61.37 days

Final Answer:

61.37 days (Incorrect)

RL-FINETUNED MODEL

Step 1: Calculate Semi-major Axis
a = (amin + amax)/2
a = (4.95× 1010 + 61.6× 1010)/2
a = 3.3275× 1011 m

Step 2: Unit Conversion Strategy
Convert a to Astronomical Units (AU) to
simplify Kepler’s Law (T 2 = a3 in
years/AU).
1 AU = 1.496× 1011 m
aau = 3.3275× 1011/1.496× 1011 ≈ 2.225 AU

Step 3: Apply Kepler’s Law
T 2 = (2.225)3 ≈ 10.96

T ≈
√
10.96 ≈ 3.31 years

Step 4: Convert to SI
1 year = 3.154× 107 seconds
T = 3.31× 3.154× 107

T ≈ 1.04× 108 seconds

Final Answer:

1.04× 108 s (Correct)

Figure 28. LLM answers before (left) and after (right) RL finetuning. Question adapted from IPhO 2013 Question 1 “The Maribo
Meteorite”.
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