
Solving Physics Olympiad via Reinforcement Learning on Physics Simulators

Anonymous Authors¹

Abstract

We have witnessed remarkable advances in LLM reasoning capabilities with the advent of DeepSeek-R1. However, much of this progress has been fueled by the abundance of internet question–answer (QA) pairs—a major bottleneck going forward, since such data is limited in scale and concentrated mainly in domains like mathematics. In contrast, other sciences such as physics lack sufficient large-scale QA datasets to effectively train reasoning-capable models. In this work, we show that physics simulators can serve as a powerful alternative source of supervision for training LLMs for physical reasoning. We generate random scenes in physics engines, create synthetic question–answer pairs from simulated interactions, and train LLMs using reinforcement learning on this synthetic data. Our models exhibit zero-shot sim-to-real transfer to real-world physics benchmarks: for example, training solely on synthetic simulated data improves performance on IPhO (International Physics Olympiad) problems by 5–10 percentage points across model sizes. These results demonstrate that physics simulators can act as scalable data generators, enabling LLMs to acquire deep physical reasoning skills beyond the limitations of internet-scale QA data.

1. Introduction

Reinforcement learning with verifiable rewards (RLVR) has enabled large language models (LLMs) to cross the threshold from pattern matching to multi-step reasoning. However, this progress is fundamentally constrained by the availability of high-quality question–answer (QA) pairs: textbook- and internet-derived QA corpora are finite, unevenly distributed across domains, and difficult to scale beyond a few million examples. As a result, RLVR systems such as DeepSeek-R1

¹Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author <anon.email@domain.com>.

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.

(DeepSeek-AI et al., 2025) are ultimately bottlenecked not by model capacity, but by the scarcity of supervision data (Wu et al., 2025).

This limitation is most visible in the physical sciences. While mathematics benefits from abundant question–answer pairs, physics, chemistry, and other empirical sciences lack comparable large-scale datasets. For example, less than 1% of the 800K QA pairs used in DeepSeek-R1 involve STEM topics, leading to poor generalization on standard physics benchmarks. The root issue is that internet QA data is sparse, unevenly distributed, and not systematically varied, leaving large gaps in the supervision signal required for scientific reasoning.

Physics engines, on the other hand, encode physical laws in executable form. Instead of describing phenomena in text, they compute future states by numerically integrating systems of ordinary differential equations under constraints. This gives them the ability to generate unlimited trajectories with high-fidelity supervision signals—such as instantaneous forces, momentum, and energy transfers—that are rarely captured in static internet corpora. However, this information is not directly usable by LLMs to improve their physics problem solving skills: simulator outputs are approximate, continuous, forward-time numerical traces, whereas physics problem solving requires accurate, inverse, symbolic, and counterfactual reasoning. The challenge, then, is how to represent simulator-derived physical information in a way that helps improve an LLM’s physics problem solving ability.

One potential solution is utilizing physics simulators as external tools (Schick et al., 2023; Sarch et al., 2025). However, this approach is non-trivial as it shifts the primary challenge from physical reasoning to code generation; the LLM must master complex simulator-specific APIs to model a problem. Our early experiments with this paradigm were unsuccessful, as models frequently struggled to produce executable and physically accurate simulation code. Furthermore, many physical phenomena are not natively supported by simulators, and implementing them requires human-in-the-loop engineering, which renders this approach unscalable. In contrast, we find that our method allows us to generalize beyond the scope of our simulator (Section 3.6).

To address these limitations, we propose Sim2Reason: a

055
 056 framework that transforms the physics simulator into a scal-
 057 able QA generator. Instead of relying on the LLM’s initial
 058 coding capabilities, we procedurally construct diverse phys-
 059 ical systems in the physics simulator and simulate their dy-
 060 namics to automatically generate verified question-answer
 061 pairs. Our pipeline produces three reasoning modes: nu-
 062 meric (state queries), reverse (parameter inference), and
 063 symbolic (closed-form expressions). These systems span a
 064 broad spectrum of classical mechanics, covering the major-
 065 ity of core phenomena encountered in undergraduate and
 066 Olympiad-level physics. The procedural nature of our Do-
 067 main Specific Language (DSL) enables the dynamic compo-
 068 sition of heterogeneous physical scenes—such as combin-
 069 ing pulley systems with rotational dynamics—generating
 070 millions of unique, physically grounded training samples
 071 (Figure 1).

072 We train LLMs using Reinforcement Learning (RL) on
 073 this synthetic data without incorporating any real-world
 074 physics QA pairs during the post-training phase. Evaluating
 075 our model across multiple rigorous benchmarks—including
 076 IPhO, JEE-Bench, PHYSICS and OlympiadBench—reveals
 077 consistent and meaningful performance gains, showcasing
 078 a robust sim-to-real transfer. We find that quality filtrating
 079 is critical to achieving these gains. For instance, simulator-
 080 generated questions often suffer from degeneracy, where
 081 problems are either trivially easy or computationally in-
 082 tractable. To address this, we implement a question pruning
 083 strategy that filters out these extremes, ensuring training
 084 compute is focused on useful samples that fall within the
 085 LLM’s solvable range.

086 Our results demonstrate that training solely on Sim2Reason
 087 data improves zero-shot performance on IPhO mechanics
 088 problems by 5–10 percentage points across 3B to 72B model
 089 scales. We observe similar gains on specialized benchmarks
 090 like JEEBench (+17.9% for 32B models) and PHYSICS,
 091 confirming that the model is not merely memorizing sim-
 092 ulator dynamics but is developing a generalized capacity
 093 for multi-step physical reasoning. Furthermore, we find
 094 that the QA pairs generated by our framework serve as an
 095 effective benchmarking tool for foundation models. We
 096 observe a high correlation between model accuracy on our
 097 simulated questions and performance on real-world physics
 098 benchmarks, enabling scalable and automated testing across
 099 specific physical domains. Please refer to our project web-
 100 page for video visualizations from SIM2REASON: <https://physics-rl.github.io/>

103 2. Method

105 To train LLMs for physical reasoning, we first generate
 106 synthetic data using a physics simulator and then fine-tune
 107 the LLM on this synthetic data. Using MuJoCo (Todorov
 108 et al., 2012) as our simulator, we generate question–answer
 109

pairs spanning a wide range of physical phenomena, broadly
 covering kinematics, rotational mechanics, orbital motion,
 variable-mass systems, and basic electromagnetism (e.g.,
 a charged particle moving in the presence of time-varying
 fields).

The data generation pipeline (Figure 2) consists of 4 stages:

1. **Scene Generation:** Generating physically meaningful random scenes
2. **Physics Simulation:** Simulating scenes to record data
3. **QA pair generation:** Generating question-answer pairs from recorded data
4. **Data filtration:** Deduplicating and filtering degenerate qa pairs

2.1. Scene Generation

To procedurally generate scenes in a structured and scalable manner, we design a domain-specific language (DSL) that isolates physically meaningful axes of randomization from those that do not fundamentally change the underlying reasoning. For example, changing the length of a pulley string typically does not affect the system’s dynamics, whereas changing the mass of a suspended block does.

Our DSL consists of three levels of abstraction: scene, entity, and body. **Body** is the most fundamental element. Each body has a name and a predefined set of parameters based on its type—for instance, the mass of a block or the radius of a sphere (see Appendix D for details). Additionally, for each body we define a template MuJoCo XML snippet and a template string that describes the body and its parameters.

However, bodies cannot be arbitrarily connected—for instance, a mass block can be placed on a prism, but not vice versa. This motivates the next level of abstraction: an **entity**, which consists of a set of bodies connected in a specific, physically meaningful way. Each entity exposes well-defined connection points that specify how it can attach to other entities. We refer to Appendix F for a detailed list of entities.

The **scene** is formed by randomly selecting entities and connecting them. We generate the MuJoCo XML for a scene by concatenating the XML templates of its entities, each of which is in turn constructed by composing the XML templates of its bodies. This design allows us to generate simulatable scenes at scale without a human in the loop (Figure 6 in Appendix).

2.2. Physics Simulation

To generate synthetic data, we simulate the generated scenes in MuJoCo and record key physical quantities for each body.

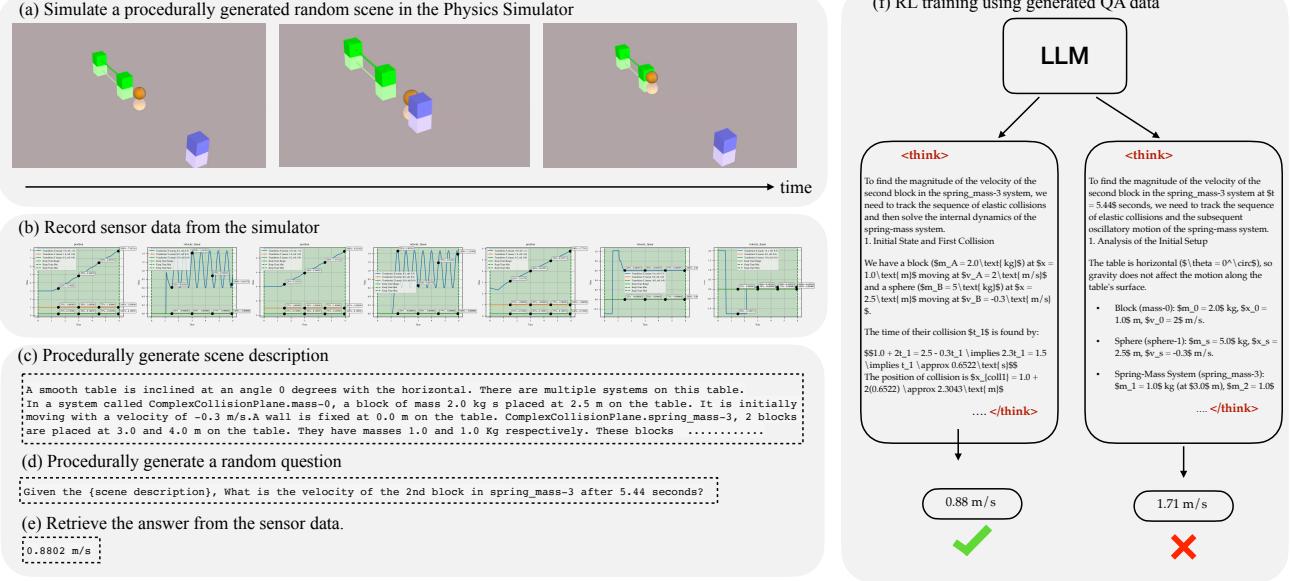


Figure 1. Overview of the SIM2REASON (Sim2Reason) pipeline. From left to right: we procedurally generate diverse physics scenes using a DSL, (a) compile them into MuJoCo simulations, and (b) record physically grounded state/force traces. (c–e) From these traces we automatically instantiate multiple types of question–answer pairs (numeric, reverse, and symbolic), and apply filtering to remove degenerate/shortcut questions and unstable simulation segments. (f) Finally, we post-train an LLM with RLVR on the resulting synthetic data and evaluate zero-shot sim-to-real transfer on real-world benchmarks (e.g., IPhO and other physics/math datasets).

We categorize bodies into either masses (proprioceptive quantities) or strings (tension and length); Appendix E lists all recorded quantities.

However, the recorded traces can contain unmodeled transitions—such as a block colliding with a pulley or falling off a plane—that lead to unpredictable dynamics. We detect these events by comparing the sliding-window mean and standard deviation. More specifically,

$$\begin{aligned} \mu_t &= \text{mean}\{a_j\}_{j=t}^{t+w}, \\ \sigma_t &= \text{std}\{a_j\}_{j=t}^{t+w}, \\ \text{truncate at } t \text{ if } \max_{i \in \{t, \dots, t+w\}} |a_i - \mu_t| &\geq k \sigma_t. \end{aligned} \quad (1)$$

Here, a denotes the recorded acceleration of a body, and k is a threshold hyperparameter controlling how aggressively we flag spikes (smaller k is more sensitive to spikes). We use $k = 5$ during data generation.

An example of this pruning procedure is shown in Figure 7 in Appendix. We also extend the simulator to support variable-mass systems, Newtonian gravitation, and collisions with a specified coefficient of restitution.

2.3. QA Pair Generation

For a given simulatable scene, we convert its recorded time-series data into natural-language question–answer pairs. We first generate a scene description by concatenating the

natural-language descriptions of its entities (themselves composed from body descriptions). We also describe inter-entity connections using reusable template strings for each connection mode.

To form a question, we randomly select a body, a recorded physical quantity, and a timestep. We generate questions in three ways, each requiring a different style of reasoning:

- **Numeric questions:** Forward reasoning, e.g., “What is the velocity of block A at time 3 s?”
- **Reverse questions:** Inverse reasoning, where one scene parameter is masked (e.g., x), e.g., “What is the mass of block A if its velocity after 3 s is 5 m/s?”
- **Symbolic questions:** Symbolic reasoning, where all numeric parameters are replaced by symbols, e.g., “What is the velocity of block A after time t ?”

2.4. Data Filtration

We filter the generated data to remove *shortcut solutions*, i.e., cases where a model can ignore part of the scene (or collapse a multi-body interaction into an oversimplified system) and still obtain the correct numeric answer (Figure 3). This is undesirable for RL training because it can reward incorrect physical reasoning and reinforce approximations.

To detect shortcut-solvable questions, we construct controlled “ablations” of each scene:

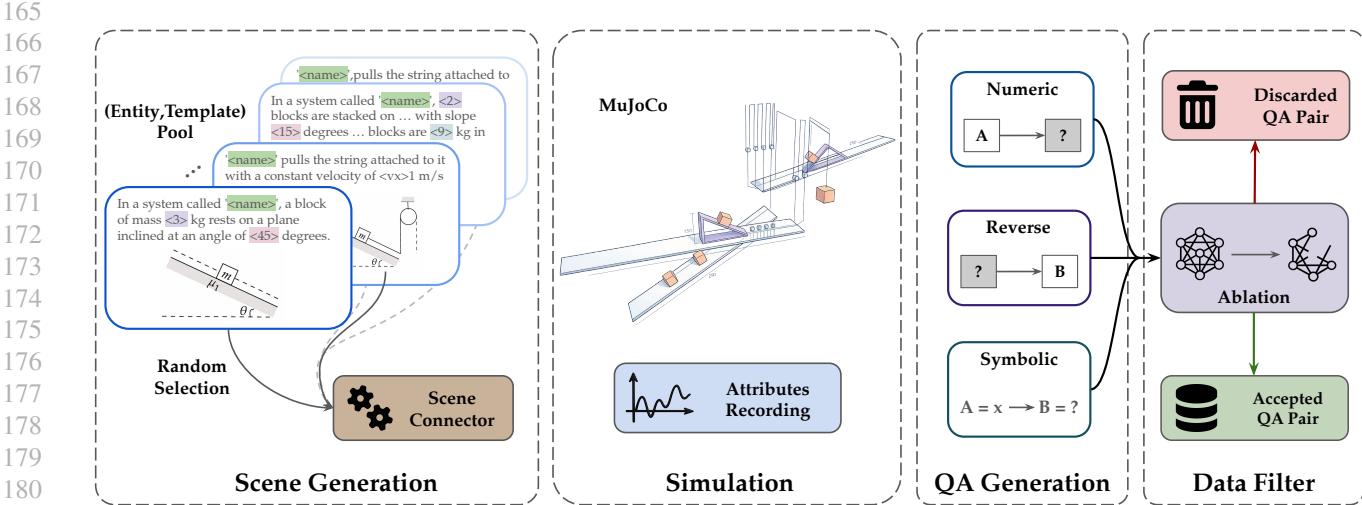


Figure 2. Overview of our synthetic data-generation pipeline. We procedurally generate simulatable scenes by randomly selecting and connecting DSL entities (Section 2.1), then simulate each scene in MuJoCo and record time-series data of key physical attributes (Section 2.2). From these traces we craft natural-language QA pairs in three formats (Section 2.3)-numeric, reverse, symbolic-and finally deduplicate and filter degenerate/shortcut-solvable questions before RL post-training (Section 2.4).

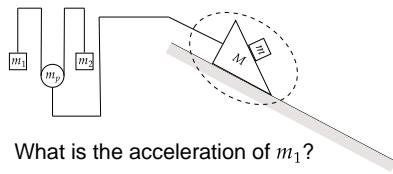


Figure 3. Illustration of a *shortcut solution*. The correct answer depends on the coupled motion of the block m and wedge M , but weaker models may collapse the dotted region into a single body of mass $M + m$ and still match the numeric answer. We filter QA pairs whose answers are invariant to such approximations.

- **Entity-removal ablations:** We treat a scene as a graph of entities and connections, generate sub-scenes by removing one entity at a time while preserving the connectivity of the remaining graph, and re-simulate these sub-scenes.
- **Joint-removal ablations:** We generate variants in which individual joints/constraints are replaced by rigid “glued” components.

For a given question, if the ground-truth answer is unchanged between the original scene and *any* ablated variant, we discard the QA pair. This prunes questions whose solution does not actually depend on the purported multi-entity dynamics and can be solved by approximating the scene with an oversimplified setup.

2.5. RL Training

We post-train the LLM using reinforcement learning with verifiable rewards (RLVR). For each prompt x , we sample a group of G responses $\{y_i\}_{i=1}^G$ from the current policy $\pi_\theta(\cdot | x)$ and assign a scalar reward $R(x, y_i)$ based on exact final-answer correctness. We optimize Group Sequence Policy Optimization (GSPO)(Zheng et al., 2025a) with a reference policy π_{ref} (the base Instruct model).

As is common in group-based RL, we compute group-relative advantages by normalizing rewards within each group (subtracting the group mean and dividing by the group standard deviation). The GSPO loss is a clipped, sequence-level policy-gradient objective:

$$\mathcal{L}_{\text{GSPO}}(\theta) = -\mathbb{E}_{x, \{y_i\}} \left[\frac{1}{G} \sum_{i=1}^G \min \left(\rho_i \hat{A}_i, \text{clip}(\rho_i, 1 - \epsilon, 1 + \epsilon) \hat{A}_i \right) \right] \quad (2)$$

where $\rho_i = \pi_\theta(y_i | x) / \pi_{\text{ref}}(y_i | x)$.

Finally, we incorporate DAPO-style *dynamic sampling* to improve training efficiency in sparse-reward settings. Concretely, if a sampled prompt yields near-zero reward standard deviation across the group (leading to near-zero advantages), we resample additional prompts until the batch is filled with informative groups.(Yu et al., 2025)

3. Experiments

We evaluate our proposed SIM2REASON pipeline by post-training LLMs of various sizes with reinforcement learning (RL) on our synthetic dataset. We then test these resulting models on real-world reasoning benchmarks.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2109
2110
2111
2112
2113
21

275 *Table 1.* Performance of Qwen2.5 family Instruct models before and after RL on synthetic datasets, expressed in percentage. Improvements
 276 are shown in parentheses.

Model	Synthetic Numeric	Synthetic Symbolic	HCV	IPhO Mechanics
Qwen3-30B	14.8%	8.8%	53.9%	35.6%
+ RL (synthetic)	17.4% (+2.6%)	8.0% (-0.8%)	59.0% (+5.1%)	40.0% (+4.4%)
Qwen2.5-72B	8.5%	4.8%	56.1%	20.3%
+ RL (synthetic)	18.1% (+9.6%)	10.4% (+5.6%)	52.2% (-3.9%)	25.6% (+5.3%)
Qwen2.5-32B	8.9%	5.6%	50.6%	19.8%
+ RL (synthetic)	21.9% (+13.0%)	10.4% (+4.8%)	53.9% (+3.3%)	25.2% (+5.4%)
Qwen2.5-14B	7.0%	5.6%	49.3%	16.07%
+ RL (synthetic)	17.0% (+10.0%)	10.4% (+4.8%)	51.7% (+2.4%)	20.45% (+4.4%)
Qwen2.5-7B	5.2%	6.4%	45.0%	10.7%
+ RL (synthetic)	17.1% (+11.9%)	10.4% (+4.0%)	42.6% (-2.4%)	12.0% (+1.3%)
Qwen2.5-3B	4.8%	3.2%	31.9%	-%
+ RL (synthetic)	12.5% (+7.7%)	9.4% (+6.2%)	39.5% (+7.6%)	13.15% (+7.5%)

(JEEBench, OlympiadBench, and PHYSICS) as well as out-of-domain math benchmarks (AIME 2025 and MATH 500). We observe consistent gains across all benchmarks. The largest improvement is on JEEBench (+17.9 points), which contains many mechanics questions closely aligned with the phenomena covered by our simulator. We also observe improvements on AIME and MATH, suggesting that training for physics reasoning also strengthens underlying algebraic and multi-step quantitative skills.

305 *Table 2.* Mean accuracy of Qwen 2.5 32B Instruct on other real
 306 world benchmarks.

Benchmark	Model	Score
JEEBench	Qwen2.5 32B	34.38%
	+ RL (synthetic)	52.28% (+17.90%)
PHYSICS	Qwen2.5 32B	39.42%
	+ RL (synthetic)	43.09% (+3.67%)
OlympiadBench	Qwen2.5 32B	41.41%
	+ RL (synthetic)	44.53% (+3.12%)
AIME 25	Qwen2.5 32B	10.83%
	+ RL (synthetic)	12.5% (+1.67%)
MATH 500	Qwen2.5 32B	78.4%
	+ RL (synthetic)	82.8% (+4.4%)

324 In this section, we take a deeper look at the improvements
 325 and broader implications of our framework. We first analyze
 326 the choice of our post-training training strategy (RL, SFT)
 327 and data composition, exploring how our synthetic data
 328 compares with existing post-training datasets such as DAPO
 329

295 17k to improve reasoning. Subsequently, we propose an
 296 alternate use case of our framework: using the simulator
 297 itself as a scalable benchmarking tool. Finally, we perform
 298 a qualitative analysis of the model’s outputs to categorize
 299 the specific axes of improvement.

3.2. Training Strategies for SIM2REASON

300 SIM2REASON can generate an effectively unbounded number
 301 of verified QA pairs from a physics simulator. A central
 302 question is therefore *how* to distill this simulator-derived
 303 supervision into the LLM in a way that (i) improves reasoning,
 304 and (ii) preserves the base model’s general capabilities,
 305 . We investigate two widely used post-training paradigms:
 306 (i) supervised fine-tuning (SFT) on high-quality demonstra-
 307 tions, and (ii) reinforcement learning with verifiable rewards
 308 (RLVR).

309 *Table 3.* Comparison of RL vs. SFT on 32B model performance.

Model (Qwen 32B)	Synthetic	IPhO
Baseline	14.0%	19.8%
+ SFT	16.0% (+2.0%)	15.9% (-3.9%)
+ RL (Ours)	32.0% (+18.0%)	25.2% (+5.4%)

310 **SFT.** We construct SFT data of 200,000 question-answer
 311 pairs by rejection-sampling solutions from strong teacher
 312 models (GPT-4, o3, and o4-mini), and then fine-tune the
 313 LLM on the resulting trajectories. As shown in Table 3, SFT
 314 yields only modest in-distribution gains on our synthetic
 315 evaluation and substantially degrades out-of-distribution
 316 performance (e.g., -3.9% on IPhO Mechanics). We hypo-
 317 esize that this is driven by a *large KL shift* from the base
 318 Instruct model, which can induce catastrophic forgetting
 319 during post-training. This failure mode is consistent with
 320

330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828

385	QUESTION	JEE Advanced 2017 Paper 2
386		
387		
388		
389		
390		
391		
392		
393		
394		
395		
396		
397		
398		
399		
400		
401		
402		
403		
404		
405		
406		
407		
408		
409		
410		
411		
412		
413		
414		
415		
416		
417		
418		
419		
420		
421		
422		
423		
424		
425		
426		
427		
428		
429		
430		
431		
432		
433		
434		
435		
436		
437		
438		
439		

Figure 5. LLM answers before (left) and after (right) RL fine-tuning. Question adapted from JEE Advanced 2017 Paper 2.

Coverage Across Difficulty Levels. We evaluate robustness across difficulty tiers in the PHYSICS benchmark. As shown in Table 6, RL post-training on SIM2REASON improves performance at *every* tier.

Gains are modest at lower tiers (e.g., +2.8% at High School and Below) and largest at the Postgraduate tier (+5.6%), suggesting simulator-based RL particularly strengthens harder multi-step quantitative reasoning. We use Gemini 2.5 Flash as a verifier.

Table 6. Detailed performance across difficulty levels on the PHYSICS benchmark.

Category	Qwen 32B	+ RL (synthetic)
High School and Below	65.5%	68.3% (+2.8%)
High School Olympiad	52.9%	54.0% (+1.1%)
Undergraduate	47.9%	48.4% (+0.5%)
Postgraduate	32.2%	37.8% (+5.6%)

Generalization Beyond Simulation. A key question is whether the gains of Sim2Reason are limited to scenarios we explicitly model in MuJoCo. We find that improvements transfer to problems that are *not* directly covered by our current library of entities. In principle, many such problems could be simulated, but doing so can require *bespoke* entity design and scene construction tailored to that specific setting (e.g., adding specialized celestial-body interactions).

For example, the problem in Figure 5 involves a rocket taking off from a planet in the presence of a star. Accurately simulating this setup would require implementing additional entities logic with this exact case in mind. Nonetheless, the base Qwen2.5-32B-Instruct model fails to solve the problem in any of eight trials, whereas after RL on our synthetic data the success rate increases to 50% (4/8). This suggests that the post-trained model is learning transferable abstractions (e.g., formulating constraints and bookkeeping forces/energy), rather than merely overfitting to simulated scenes.

Qualitative Examples. To concretely illustrate these gains, we present comparative case studies across real-world problems. We observe improvements along several axes: **arithmetic** (reducing calculation errors; Figures 27, 28), **physical reasoning** (mapping text to correct equations and boundary conditions; Figures 5, 25, 26), and **strategic planning** (e.g., unit conversions and intermediate checks; Figure 24).

4. Conclusion

We presented SIM2REASON, a simulator-driven pipeline that procedurally generates diverse physics scenes, converts simulated traces into verifiable QA pairs, and post-trains LLMs with RLVR. Across multiple real-world benchmarks (e.g., IPhO mechanics), models trained only on synthetic simulator supervision show consistent zero-shot sim-to-real gains, suggesting simulators are a scalable source of reasoning supervision.

A direct avenue for future work is to combine simulator-generated data with curated real-world QA to further improve robustness and coverage. More broadly, extending this approach beyond classical mechanics to other areas of physics (e.g., E&M, thermodynamics) and to other physical sciences is a promising direction.

440 Impact Statement

441 This work investigates training language models for physical reasoning using synthetic question–answer supervision
 442 generated from physics simulators. We expect the primary
 443 positive impact to be improved access to high-quality scientific
 444 tutoring and problem-solving tools, and a reduction in
 445 dependence on scraping internet QA data.

446 Potential risks include misuse of stronger reasoning models
 447 (e.g., to assist in harmful engineering) and over-reliance on
 448 simulator-generated supervision, which may encode modeling
 449 assumptions and failure modes that do not hold in the real world.
 450 To mitigate these issues, we emphasize evaluation on real-world benchmarks, report limitations of
 451 simulator fidelity and coverage, and encourage downstream
 452 deployments to include safeguards, monitoring, and domain-
 453 specific validation.

454 References

455 AIME. Aime problems and solutions. Website, 2025. URL
 456 https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions.
 457 Accessed: 2026-01-29.

458 Amad, H., Astorga, N., and van der Schaar, M. Continuously
 459 updating digital twins using large language models, 2025.
 460 URL <https://arxiv.org/abs/2506.12091>.

461 Angelis, D., Sofos, F., and Karakasidis, T. E. Artificial intel-
 462 ligence in physical sciences: Symbolic regression trends
 463 and perspectives. *Archives of Computational Methods in*
 464 *Engineering*, pp. 1, 2023.

465 Arora, D., Singh, H. G., and Mausam. Have llms advanced
 466 enough? a challenging problem solving benchmark for
 467 large language models, 2023. URL <https://arxiv.org/abs/2305.15074>.

468 Brunton, S. L., Proctor, J. L., and Kutz, J. N. Discovering
 469 governing equations from data by sparse
 470 identification of nonlinear dynamical systems. *Proceedings of the National Academy of Sciences*,
 471 113(15):3932–3937, 2016. doi: 10.1073/pnas.1517384113. URL <https://www.pnas.org/doi/abs/10.1073/pnas.1517384113>.

472 DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J.,
 473 Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi, X.,
 474 Zhang, X., Yu, X., Wu, Y., Wu, Z. F., Gou, Z., Shao,
 475 Z., Li, Z., Gao, Z., Liu, A., Xue, B., Wang, B., Wu, B.,
 476 Feng, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan,
 477 C., Dai, D., Chen, D., Ji, D., Li, E., Lin, F., Dai, F., Luo,
 478 F., Hao, G., Chen, G., Li, G., Zhang, H., Bao, H., Xu,
 479 H., Wang, H., Ding, H., Xin, H., Gao, H., Qu, H., Li,
 480 H., Guo, J., Li, J., Wang, J., Chen, J., Yuan, J., Qiu, J.,
 481

482 Li, J., Cai, J. L., Ni, J., Liang, J., Chen, J., Dong, K.,
 483 Hu, K., Gao, K., Guan, K., Huang, K., Yu, K., Wang, L.,
 484 Zhang, L., Zhao, L., Wang, L., Zhang, L., Xu, L., Xia,
 485 L., Zhang, M., Zhang, M., Tang, M., Li, M., Wang, M.,
 486 Li, M., Tian, N., Huang, P., Zhang, P., Wang, Q., Chen,
 487 Q., Du, Q., Ge, R., Zhang, R., Pan, R., Wang, R., Chen,
 488 R. J., Jin, R. L., Chen, R., Lu, S., Zhou, S., Chen, S., Ye,
 489 S., Wang, S., Yu, S., Zhou, S., Pan, S., Li, S. S., Zhou,
 490 S., Wu, S., Ye, S., Yun, T., Pei, T., Sun, T., Wang, T.,
 491 Zeng, W., Zhao, W., Liu, W., Liang, W., Gao, W., Yu, W.,
 492 Zhang, W., Xiao, W. L., An, W., Liu, X., Wang, X., Chen,
 493 X., Nie, X., Cheng, X., Liu, X., Xie, X., Liu, X., Yang,
 494 X., Li, X., Su, X., Lin, X., Li, X. Q., Jin, X., Shen, X.,
 495 Chen, X., Sun, X., Wang, X., Song, X., Zhou, X., Wang,
 496 X., Shan, X., Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhang,
 497 Y., Xu, Y., Li, Y., Zhao, Y., Sun, Y., Wang, Y., Yu, Y.,
 498 Zhang, Y., Shi, Y., Xiong, Y., He, Y., Piao, Y., Wang, Y.,
 499 Tan, Y., Ma, Y., Liu, Y., Guo, Y., Ou, Y., Wang, Y., Gong,
 500 Y., Zou, Y., He, Y., Xiong, Y., Luo, Y., You, Y., Liu, Y.,
 501 Zhou, Y., Zhu, Y. X., Xu, Y., Huang, Y., Li, Y., Zheng,
 502 Y., Zhu, Y., Ma, Y., Tang, Y., Zha, Y., Yan, Y., Ren, Z. Z.,
 503 Ren, Z., Sha, Z., Fu, Z., Xu, Z., Xie, Z., Zhang, Z., Hao,
 504 Z., Ma, Z., Yan, Z., Wu, Z., Gu, Z., Zhu, Z., Liu, Z., Li,
 505 Z., Xie, Z., Song, Z., Pan, Z., Huang, Z., Xu, Z., Zhang,
 506 Z., and Zhang, Z. Deepseek-r1: Incentivizing reasoning
 507 capability in llms via reinforcement learning, 2025. URL
<https://arxiv.org/abs/2501.12948>.

508 Habib, N., Fourrier, C., Kydlíček, H., Wolf, T., and
 509 Tunstall, L. Lighteval: A lightweight framework for
 510 llm evaluation, 2023. URL <https://github.com/huggingface/lighteval>.

511 He, C., Luo, R., Bai, Y., Hu, S., Thai, Z. L., Shen, J.,
 512 Hu, J., Han, X., Huang, Y., Zhang, Y., Liu, J., Qi, L.,
 513 Liu, Z., and Sun, M. Olympiadbench: A challenging
 514 benchmark for promoting agi with olympiad-level
 515 bilingual multimodal scientific problems, 2024. URL
<https://arxiv.org/abs/2402.14008>.

516 Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
 517 S., Tang, E., Song, D., and Steinhardt, J. Measuring mathematical
 518 problem solving with the math dataset, 2021. URL
<https://arxiv.org/abs/2103.03874>.

519 Raissi, M., Perdikaris, P., and Karniadakis, G. Physics-
 520 informed neural networks: A deep learning frame-
 521 work for solving forward and inverse problems involv-
 522 ing nonlinear partial differential equations. *Journal*
 523 *of Computational Physics*, 378:686–707, 2019. ISSN
 524 0021-9991. doi: <https://doi.org/10.1016/j.jcp.2018.10.045>. URL
<https://www.sciencedirect.com/science/article/pii/S0021999118307125>.

525 Rasheed, A., Ravik, O., and San, O. Hybrid modeling, sim-
 526 to-real reinforcement learning, and large language model

495 driven control for digital twins, 2025. URL <https://arxiv.org/abs/2510.23882>.
496
497

498 Sarch, G., Saha, S., Khandelwal, N., Jain, A., Tarr, M. J.,
499 Kumar, A., and Fragkiadaki, K. Grounded reinforcement
500 learning for visual reasoning, 2025. URL <https://arxiv.org/abs/2505.23678>.
501
502

503 Schick, T., Dwivedi-Yu, J., Dessì, R., Raileanu, R., Lomeli,
504 M., Zettlemoyer, L., Cancedda, N., and Scialom, T.
505 Toolformer: Language models can teach themselves to
506 use tools, 2023. URL <https://arxiv.org/abs/2302.04761>.
507
508 Schmidt, M. D. and Lipson, H. Distilling Free-Form Natural
509 Laws from Experimental Data. *Science*, 324:81–85, 2009.
510 doi: 10.1126/science.1165893.
511
512 Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang,
513 H., Zhang, M., Li, Y., Wu, Y., et al. Deepseekmath: Pushing
514 the limits of mathematical reasoning in open language
515 models. *arXiv preprint arXiv:2402.03300*, 2024.
516
517 Shenfeld, I., Pari, J., and Agrawal, P. Rl’s razor: Why
518 online reinforcement learning forgets less, 2025. URL
519 <https://arxiv.org/abs/2509.04259>.
520
521 Shojaee, P., Meidani, K., Gupta, S., Farimani, A. B., and
522 Reddy, C. K. Llm-sr: Scientific equation discovery via
523 programming with large language models, 2025. URL
524 <https://arxiv.org/abs/2404.18400>.
525
526 Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
527 engine for model-based control. In *2012 IEEE/RSJ International Conference on Intelligent Robots and Systems*,
528 pp. 5026–5033. IEEE, 2012. doi: 10.1109/IROS.2012.
529 6386109.
530
531 Udrescu, S.-M. and Tegmark, M. Ai feynman: a physics-
532 inspired method for symbolic regression, 2020. URL
533 <https://arxiv.org/abs/1905.11481>.
534
535 Verma, H. C. *Concepts of Physics: Part 1.* Concepts
536 of Physics. Bharati Bhawan Publishers & Distributors,
537 Patna, India, 2017. ISBN 9788177091878.
538
539 Wu, F., Xuan, W., Qi, H., Lu, X., Tu, A., Li, L. E., and
540 Choi, Y. Deepsearch: Overcome the bottleneck of re-
541inforcement learning with verifiable rewards via monte
542 carlo tree search, 2025. URL <https://arxiv.org/abs/2509.25454>.
543
544 Xia, Y., Dittler, D., Jazdi, N., Chen, H., and Weyrich, M.
545 Llm experiments with simulation: Large language model
546 multi-agent system for simulation model parametrization
547 in digital twins, 2024. URL <https://arxiv.org/abs/2405.18092>.
548
549

Xin, H., Guo, D., Shao, Z., Ren, Z., Zhu, Q., Liu, B., Ruan, C., Li, W., and Liang, X. Deepseek-prover: Advancing theorem proving in llms through large-scale synthetic data. *arXiv preprint arXiv:2405.14333*, 2024.
Yang, A., Li, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Gao, C., Huang, C., Lv, C., et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025a.
Yang, L., Luo, S., Cheng, X., and Yu, L. Leveraging large language models for enhanced digital twin modeling: Trends, methods, and challenges, 2025b. URL <https://arxiv.org/abs/2503.02167>.
Yu, Q., Zhang, Z., Zhu, R., Yuan, Y., Zuo, X., Yue, Y., Dai, W., Fan, T., Liu, G., Liu, L., Liu, X., Lin, H., Lin, Z., Ma, B., Sheng, G., Tong, Y., Zhang, C., Zhang, M., Zhang, W., Zhu, H., Zhu, J., Chen, J., Chen, J., Wang, C., Yu, H., Song, Y., Wei, X., Zhou, H., Liu, J., Ma, W.-Y., Zhang, Y.-Q., Yan, L., Qiao, M., Wu, Y., and Wang, M. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL <https://arxiv.org/abs/2503.14476>.
Zheng, C., Liu, S., Li, M., Chen, X.-H., Yu, B., Gao, C., Dang, K., Liu, Y., Men, R., Yang, A., Zhou, J., and Lin, J. Group sequence policy optimization, 2025a. URL <https://arxiv.org/abs/2507.18071>.
Zheng, S., Cheng, Q., Yao, J., Wu, M., He, H., Ding, N., Cheng, Y., Hu, S., Bai, L., Zhou, D., Cui, G., and Ye, P. Scaling physical reasoning with the physics dataset, 2025b. URL <https://arxiv.org/abs/2506.00022>.
Zhu, Q., Guo, D., Shao, Z., Yang, D., Wang, P., Xu, R., Wu, Y., Li, Y., Gao, H., Ma, S., et al. Deepseek-coder-v2: Breaking the barrier of closed-source models in code intelligence. *arXiv preprint arXiv:2406.11931*, 2024.

550 A. Related Work

551 **Reinforcement Learning from Verifiable Feedback** Recent work has explored Reinforcement Learning from Verifiable
 552 Rewards (RLVR) as a scalable alternative to human preference annotation for training reasoning-capable language models
 553 (DeepSeek-AI et al., 2025; Yu et al., 2025; Shao et al., 2024; Yang et al., 2025a). In RLVR, models are trained using
 554 automatically verifiable signals—such as exact-answer matching, program execution, theorem proving, or symbolic
 555 checks—to provide dense, objective reward signals for complex reasoning tasks (Zhu et al., 2024; Xin et al., 2024; Yang
 556 et al., 2025a). This paradigm has been successfully applied in domains such as mathematics, code generation, and formal
 557 reasoning, where correctness can be algorithmically verified. However, existing RLVR approaches rely on domains with
 558 deterministic and symbolic verification pipelines and are limited by the availability of structured ground truth problems
 559 and answers. In contrast, our work extends the RLVR paradigm to physical reasoning, where supervision is derived from
 560 physics simulation rather than question-answer pairs. By using simulators to generate verifiable outcomes and synthetic QA
 561 supervision, we enable RL-based training of LLMs in domains where formal verification might be infeasible, demonstrating
 562 zero-shot transfer to real-world physics benchmarks such as IPhO.

563
 564
 565 **Symbolic Regression and Digital Simulation Twins** Symbolic regression aims to recover interpretable physical laws
 566 from data (Angelis et al., 2023), using methods ranging from genetic programming (Schmidt & Lipson, 2009) to sparse
 567 regression (Brunton et al., 2016) and neural approaches (Udrescu & Tegmark, 2020; Raissi et al., 2019). Recent work also
 568 explores using LLMs to assist equation discovery (Shojaee et al., 2025).

569 LLM-based “digital twins” use language models as interfaces or decision modules within simulated environments (Yang
 570 et al., 2025b; Amad et al., 2025; Xia et al., 2024; Rasheed et al., 2025). In contrast, we use simulators as supervision to train
 571 LLMs for physical reasoning, including symbolic questions (Section 2.3).

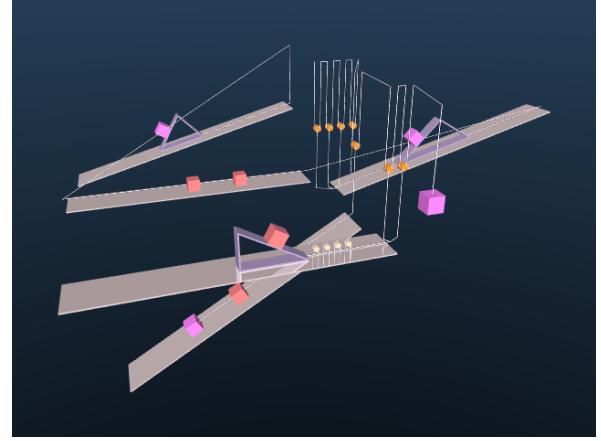
572 B. Domain-Specific Language and Timestep pruning strategy

573 We summarize the two additional components used to build training data. Figure 6 shows the YAML-based scene-generation
 574 DSL and an example MuJoCo rendering produced by compiling it to MuJoCo XML, while Figure 7 illustrates our
 575 timestep-pruning heuristic that removes unstable trace suffixes before QA generation.

576
 577
 578
 579
 580
 581
 582
 583
 584 **DSL**
 585

```
scene:
  name: "Pulley System"
  entities:
    - name: "entity_1"
      type: "MassWithFixedPulley"
    ...
    - ...
  connections:
    - entity: "entity_1"...
```

 586
 587
 588
 589
 590



591 *Figure 6.* Example of our scene-generation DSL (top) and the corresponding MuJoCo-rendered scene produced by compiling the DSL
 592 into MuJoCo XML (bottom). The DSL composes scenes from reusable entities and bodies with explicit connection modes, enabling
 593 scalable procedural generation while restricting randomization to physically meaningful parameters.

600 C. Additional Results

601 Figure 8 reports a correlation analysis across models/runs, showing that higher accuracy on our SIM2REASON synthetic
 602 questions tends to coincide with higher accuracy on IPhO mechanics. This supports using the synthetic QA suite as a
 603 lightweight proxy for real-world physics reasoning performance.

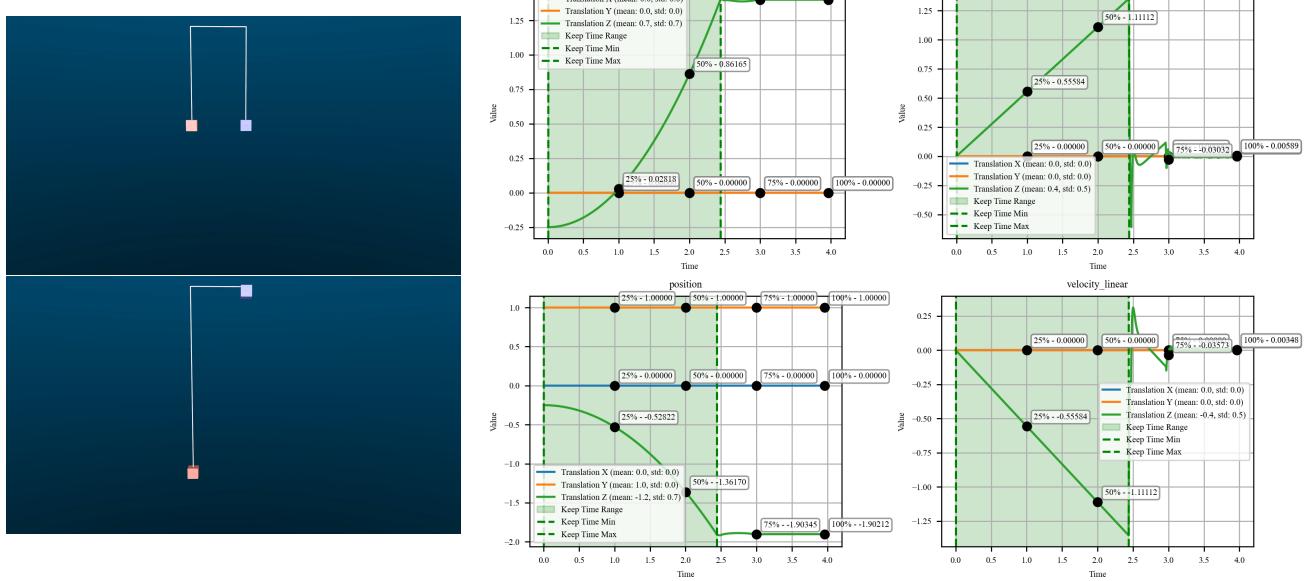


Figure 7. Timestep pruning for simulation traces with unmodelled transitions. Left: MuJoCo scene snapshots at the start and at time 3s. Right: recorded time-series signals; when a sliding-window deviation criterion flags an outlier (e.g., due to contact between block and pulley), we keep only the stable prefix (green) and discard the remainder before generating QA pairs.

D. Bodies and their parameters

We define a list of bodies, along with their randomizable parameters.

Body	Symbol(s)	Description
Mass	m	Point mass / block mass.
Sphere	r, m	Sphere radius and mass.
Polygonal prism	n, r, h, m	Number of sides, circumscribed radius, height, and mass.
Cylinder	r, h, m	Cylinder radius, height, and mass.
Disc	r, m	Disc radius and mass.
Bar	w, ℓ, h, m	Bar width, length, height, and mass.
Hemisphere	r, m	Hemisphere radius and mass.
Bowl	r, h_c, t, m	Bowl radius, cutting-plane height h_c , shell thickness t (if hollow), and mass.
Sphere with spherical hole	r, r_h, p_h, t, m	Outer radius r , hole radius r_h , hole position p_h , shell thickness t (if hollow), and mass.
Rocket	m_{dry}, m_0	Dry mass m_{dry} and initial total mass m_0 .
Triangular prism	α_L, α_R, m	Left/right face slopes (angles) and mass.
Plane	α	Plane slope (incline angle).
Pulley	m	Pulley mass.
Spring–mass system	$\{k_i\}, \{\ell_{0,i}\}, \{x_i\}, \{m_i\}$	Spring constants, natural lengths, mass positions, and masses connected by springs.

Table 7. Bodies used by the DSL and the corresponding randomizable parameters.

E. Recorded physical quantities

During simulation, we log time-series data for each scene to enable question-answer pair generation. We group data into three categories: **mass**-related (body state and dynamics), **string**-related (length/tension), and **contact** (interaction forces).

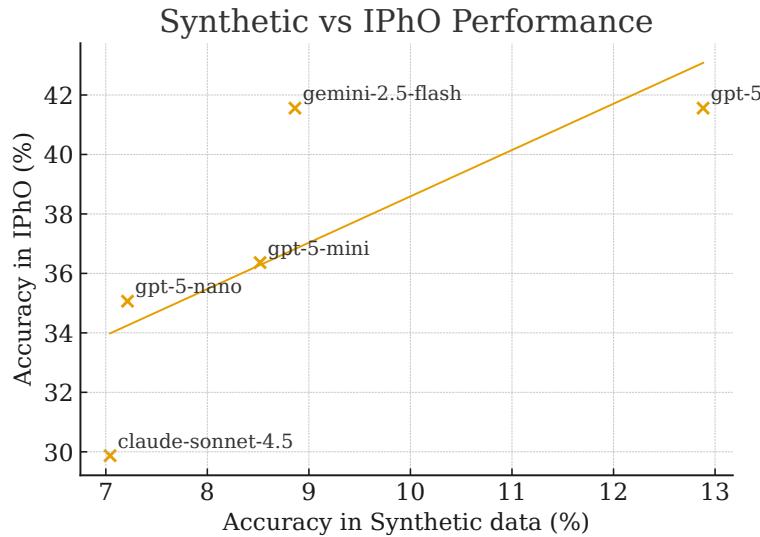


Figure 8. Correlation between accuracy on SIM2REASON synthetic questions and IPhO mechanics questions.

F. Entities and their Connections

Here, we show a list of entities that we define (Figures 9–23). The randomizable parameters for each entity are visualized in the figures by their respective mathematical notations. The connection points and modes are also visualized as dotted lines.

`mass_with_fixed_pulley` consists of a fixed pulley with one side open for connection to other entities (represented by dotted line), and the other connected to a simple mass system. Below are the 3 variants of mass systems which are supported by this entity.

ENTITY VISUALIZATION

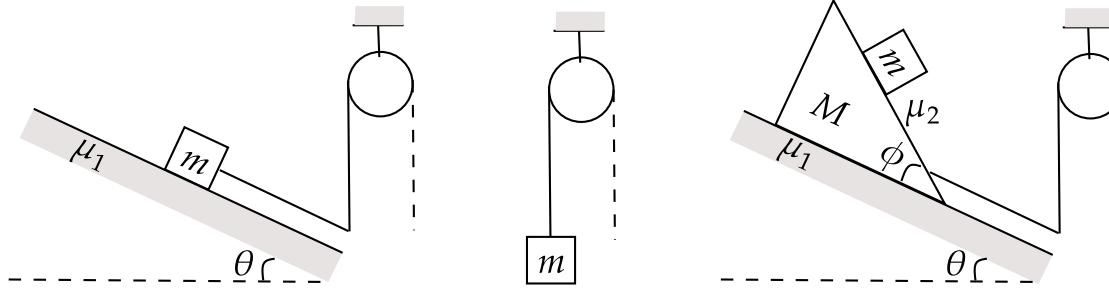


Figure 9. Mass With Fixed Pulley

Category	Quantity	Description
Mass	displacement	Body displacement / position (in world frame).
Mass	com_offset	Vector from body frame origin to center of mass.
Mass	velocity (6D)	Linear and angular velocity.
Mass	acceleration (6D)	Linear and angular acceleration.
Mass	mass	Body mass.
Mass	momentum (6D)	Linear and angular momentum.
Mass	net force (6D)	Net force/torque (consistent with $F = ma$).
Mass	kinetic_energy_linear	Translational kinetic energy.
Mass	kinetic_energy_angular	Rotational kinetic energy.
Mass	potential_energy	Gravitational potential energy.
Mass	inertia	Inertia tensor.
Mass	em_potential_energy	Electromagnetic potential energy (when applicable).
Contact	normal_force	Normal contact force at interaction points.
Contact	friction_force	Tangential/frictional contact force.
String	length	Current string length.
String	velocity	Rate of change of string length.
String	force	Tension force.
String	stiffness	Spring constant (for elastic strings/springs).

Table 8. Physical quantities recorded from MuJoCo for each simulated scene.

`mass_with_movable_pulley` consists of a movable pulley with both sides connected to one of the variants of `mass_with_fixed_pulley` (represented by dotted shapes E_1 and E_2), and the top is open for connection to other entities (represented by dotted line).

ENTITY VISUALIZATION

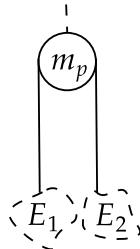
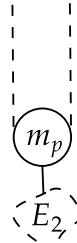


Figure 10. Mass With Movable Pulley

770
 771 `mass_with_reverse_movable_pulley` is the reverse variant of `mass_with_movable_pulley` where the two
 772 connections of the pulley pull it up, whereas in `mass_with_movable_pulley` the two connections of the pulley
 773 pull it down.
 774

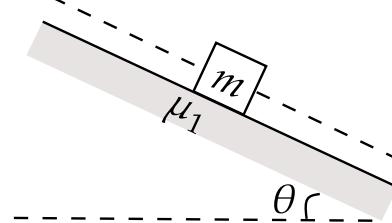
775 **ENTITY VISUALIZATION**
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786



787 *Figure 11. Mass With Movable Pulley*
 788

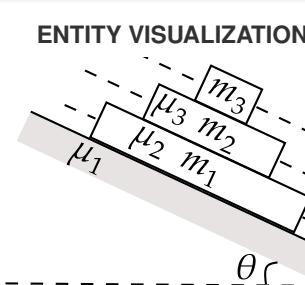
789
 790 `two_side_mass_plane` consists of a mass on plane which can be connected to other entities on either sides.
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807

808 **ENTITY VISUALIZATION**
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824



825 *Figure 12. Two Side Mass Plane*
 826

827
 828 `stacked_mass_plane` consists of long mass blocks stacked on top of each other on a plane. Each of these mass
 829 blocks can be connected to other entities on either side.
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 9999



9999 *Figure 13. Stacked Mass Plane*

directed_mass consists of mass block suspended from two fixed pulleys. The other ends of each of these pulleys can be connected to other entities.

ENTITY VISUALIZATION

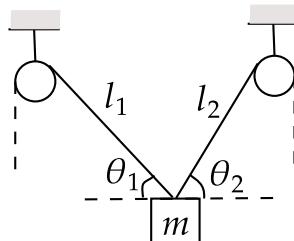


Figure 14. Directed mass

mass_prism_plane consists of a movable inclined plane and two mass blocks on either side of it. These mass blocks are connected to each other by a string.

ENTITY VISUALIZATION

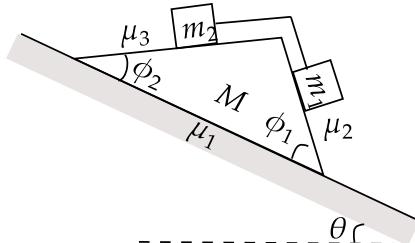


Figure 15. Mass Prism Plane

mass_box_plane consists of a large movable mass block and optional mass blocks on either face of it. These mass blocks are connected to each other by a string.

ENTITY VISUALIZATION

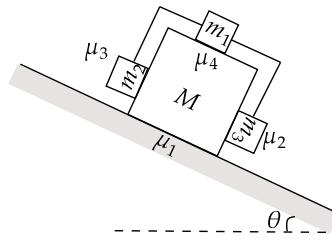


Figure 16. Mass Box Plane

880
 881 `twoD_collision_plane` consists of a large frictionless plane and a couple of spheres on top it, each given with
 882 some initial velocity.
 883

884 **ENTITY VISUALIZATION**
 885

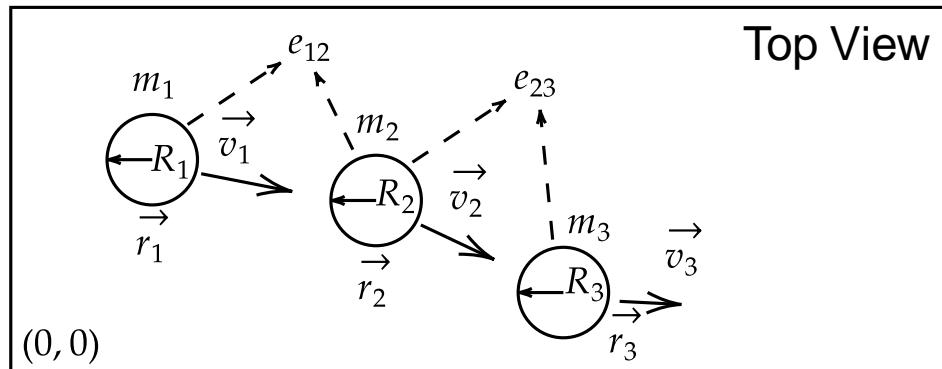


Figure 17. TwoD Collision Plane

900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934

900 `complex_collision_plane` consists of a long frictionless plane and a couple of objects on top it, each given with some initial velocity. This setup is entirely 1D to lower complexity of the problems. Possible objects are sphere, block, fixed wall and spring blocks.
 901

902 **ENTITY VISUALIZATION**
 903

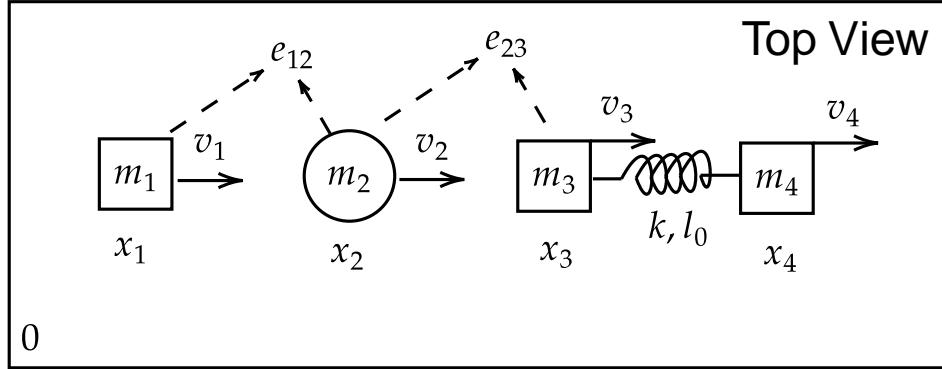


Figure 18. Complex Collision Plane

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

`solar_system` consists of a stationary star and a couple of planets revolving around it.

ENTITY VISUALIZATION

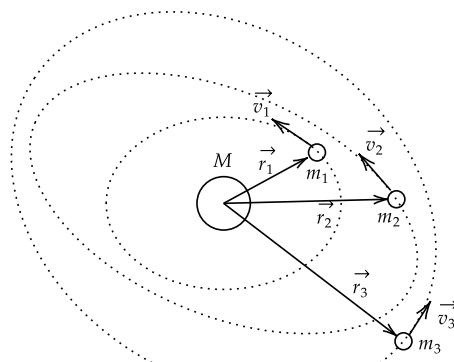


Figure 19. Solar System

`rocket_entity` consists of a stationary planet and a rocket taking off of the planet. The rocket has a dry mass m_0 and initial mass m . It burns fuel to propel itself, losing mass at a rate of μ .

ENTITY VISUALIZATION

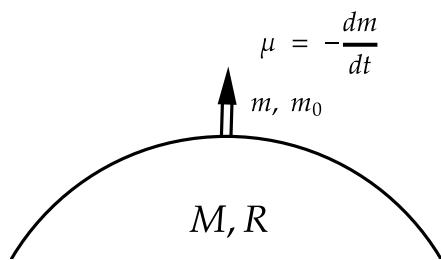
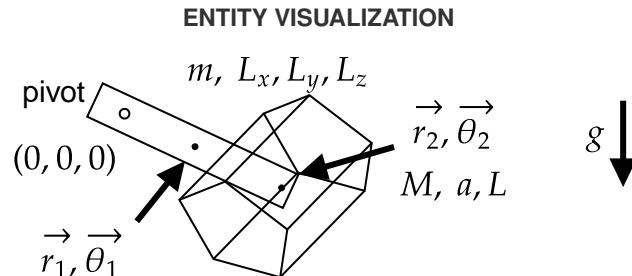


Figure 20. Rocket Entity

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

990
 991 **rotation_entity** consists of multiple 3D shapes attached to each other with rigid joints so that they move
 992 together. Additionally, they are attached to a pivot, allowing them to rotate around it due to gravity in a pendulum
 993 motion.



1007 *Figure 21. Rotation Entity*

1008
 1009
 1010 **rolling_entity** consists of 3D shapes rolling on an inclined plane. We choose primitive 3D shapes such as
 1011 spheres, cylinder and polygon cylinders. Additionally we also randomly cutout a shape from the body-for instance
 1012 cutting a smaller sphere from a sphere results in a spherical shell. We automate this by using blender to generate
 1013 arbitrary cutout shapes.

1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026

ENTITY VISUALIZATION

r

θ

μ

h

1027 *Figure 22. Rolling Entity*

1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044

entity consists of a moving charged particle in space in the presence of varying Electric (\vec{E}) and Magnetic fields (\vec{B}). These fields vary as a known function of the position, velocity of the particle and time.

ENTITY VISUALIZATION

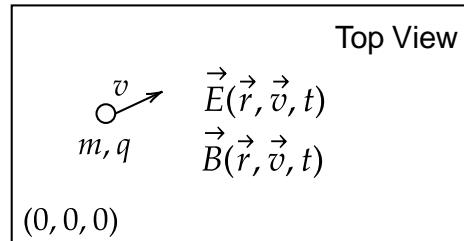


Figure 23. Electro Magnetism Entity

IPhO 2005 Q1

QUESTION

A geosynchronous satellite of mass m is in a circular orbit of radius r_0 with velocity v_0 .

An error causes the engine to fire, providing an instantaneous radial thrust Δv directed towards Earth. We characterize this boost by the parameter:

$$\beta = \frac{\Delta v}{v_0}$$

Task: Calculate the minimum boost parameter β_{esc} needed for the satellite to escape Earth's gravity.

BASE MODEL

Step 1: Orbital Velocity
 $v_0 = \sqrt{GM_E/r_0}$

Step 2: Escape Condition

Escape velocity: $v_{\text{esc}} = \sqrt{2GM_E/r_0}$
 Condition: $v_{\text{after}} \geq v_{\text{esc}}$

Since the thrust is directed radially inward, the effective velocity becomes reduced:

$$v_{\text{after}} = v_0 - \Delta v$$

ERROR: Linear subtraction. Fails to treat velocity as a vector (radial \perp tangential).

Step 3: Solve for β
 $\sqrt{GM/r} - \beta\sqrt{GM/r} \geq \sqrt{2GM/r}$

$$(1 - \beta) \geq \sqrt{2}$$

$$1 - \sqrt{2} \geq \beta \implies \beta \approx -0.41$$

(Model confuses signs and algebra)
 $\beta \geq \sqrt{2} - 1 \approx 0.41$

Final Answer:

$$\beta_{\text{esc}} = \sqrt{2} - 1 \approx 0.41 \quad (\text{Incorrect})$$

RL-FINETUNED MODEL

Step 1: Energy Analysis

Initial Energy: $E_0 = -GMm/2r_0$

Escape Velocity needed: $v_{\text{esc}} = \sqrt{2GM/r_0}$

Step 2: Vector Addition

The kick is radial (Δv), perpendicular to the orbital velocity (v_0). The new velocity magnitude adds in quadrature:
 $v_{\text{new}} = \sqrt{v_0^2 + (\Delta v)^2}$

Step 3: Escape Condition

$$v_{\text{new}} \geq v_{\text{esc}} \\ \sqrt{v_0^2 + (\Delta v)^2} \geq \sqrt{2}v_0$$

Substitute $\Delta v = \beta v_0$:

$$\sqrt{v_0^2 + \beta^2 v_0^2} \geq \sqrt{2}v_0 \\ \sqrt{1 + \beta^2} \geq \sqrt{2}$$

Step 4: Solve for β

$$1 + \beta^2 \geq 2$$

$$\beta^2 \geq 1 \implies \beta \geq 1$$

Final Answer:

$$\beta_{\text{esc}} = 1 \quad (\text{Correct})$$

Figure 24. LLM answers before (left) and after (right) RL finetuning. Question adapted from IPhO 2005 Q1 “An Ill Fated Satellite”.

JEE Advanced 2023 Paper 1

QUESTION

A small mass ($m = 0.10 \text{ kg}$) moving with initial speed $u = 5.00 \text{ m/s}$ collides elastically with a bar (Mass $M = 1.00 \text{ kg}$, Length $L = 0.20 \text{ m}$) that is pivoted at one end. The collision occurs at a distance $L/2$ from the pivot.

Parameters:

- $m = 0.10 \text{ kg}; u = 5.00 \text{ m/s}$
- $M = 1.00 \text{ kg}; L = 0.20 \text{ m}$
- I_{bar} (about pivot) = $ML^2/3$

The velocity of the small mass (v) after the collision is closest to:

[A] 4.30 m/s [B] 5.00 m/s [C] -2.50 m/s [D] 2.15 m/s

BASE MODEL

Step 1: Conservation of Angular Momentum

$$L_{\text{initial}} = m \cdot u \cdot (L/2)$$

$$L_{\text{initial}} = 0.1 \times 5.0 \times 0.1 = 0.005$$

ERROR: Arithmetic (Should be 0.05)

$$L_{\text{final}} = I_{\text{pivot}}\omega + mv(L/2)$$

$$0.005 = 0.00133\omega + 0.005v$$

Step 2: Conservation of Kinetic Energy

Since collision is elastic, conserve energy.

$$KE_{\text{initial}} = 0.5mu^2 = 1.25 \text{ J}$$

For the bar, we consider both rotation and translation:

$$KE_{\text{bar}} = 0.5I_{\text{pivot}}\omega^2 + 0.5Mv_{\text{cm}}^2$$

ERROR: Double counting energy

(Using I_{pivot} already accounts for motion of COM. Adding linear KE counts twice.)

Step 3: Solve System

The model attempts to fit the values... finds $v \approx 4.30 \text{ m/s}$, but associates it with wrong option due to internal confusion.

Predicted Answer: [B] 5.00 m/s
(Incorrect)

RL-FINETUNED MODEL

Step 1: Conservation of Angular Momentum

Calculate initial angular momentum correctly:

$$L_{\text{initial}} = m \cdot u \cdot (L/2)$$

$$L_{\text{initial}} = 0.10 \times 5.00 \times 0.10 = 0.05$$

$$L_{\text{final}} = I_{\text{pivot}}\omega + mv(L/2)$$

$$0.05 = (\frac{1}{3} \times 1.0 \times 0.2^2)\omega + 0.1v(0.1)$$

$$0.05 = 0.0133\omega + 0.01v$$

Step 2: Conservation of Kinetic Energy

For a bar pivoting at the end, KE is purely rotational about pivot:

$$KE_{\text{bar}} = 0.5I_{\text{pivot}}\omega^2$$

Equation:

$$1.25 = 0.05v^2 + 0.00665\omega^2$$

Step 3: Solve System

From Momentum: $v = 5 - 1.33\omega$

Substitute into Energy...

Solving yields $\omega \approx 7.0 \text{ rad/s}$.

Substituting ω back to find v :

$$v = 5 - 1.33(7.0) \approx 4.30 \text{ m/s}$$

Conclusion:

Velocity decreases slightly to 4.30 m/s.

Predicted Answer: [A] 4.30 m/s
(Correct)

Figure 25. LLM answers before (left) and after (right) RL finetuning. Question adapted from JEE Advanced 2023 Paper 1.

IPhO 2012 Q1

QUESTION

A ball is thrown with a fixed initial speed v_0 in a homogeneous gravitational field. The x-axis is horizontal, and the z-axis is vertical (opposing gravity g).

By adjusting the launching angle, the ball can hit any target within a region defined by the parabola: $z \leq z_0 - kx^2$

You can use this fact without proving it. Find the constants z_0 and k in terms of v_0 and g .

BASE MODEL

Step 1: Write Equations of Motion
The trajectory of a single projectile is given by:

$$x = v_0 \cos(\theta)t$$

$$z = v_0 \sin(\theta)t - \frac{1}{2}gt^2$$

Eliminating t , we get the trajectory equation:

$$z = x \tan(\theta) - \frac{gx^2}{2v_0^2 \cos^2(\theta)}$$

Step 2: Match Coefficients

We compare this specific trajectory to the given boundary equation:
 $z = z_0 - kx^2$.

To find the constants, we assume the standard case for maximums, which is $\theta = 45^\circ$.

- At 45 degrees, $\tan(\theta) = 1$.
- At 45 degrees, $\cos^2(\theta) = 0.5$.

Step 3: Solve for k

Looking at the x^2 term in the trajectory equation:

$$\text{Coefficient} = \frac{g}{2v_0^2 \cos^2(\theta)}$$

Substitute $\cos^2(45) = 0.5$:

$$k = \frac{g}{2v_0^2 \cdot 0.5}$$

$$k = g/v_0^2$$

ERROR: Assumed boundary is defined by the 45-degree path.

Conclusion:

$$z_0 = v_0^2/(2g)$$

$$k = g/v_0^2$$

Predicted Answer: $z_0 = v_0^2/2g, k = g/v_0^2$
(Incorrect k)

RL-FINETUNED MODEL

Step 1: Analyze the Physical Meaning
The equation $z = z_0 - kx^2$ represents the "Envelope of Safety" | the outer boundary of all possible trajectories. We are not looking for one specific path, but the limits of all paths.

We can find the constants by identifying two critical edge cases on this boundary:

1. The maximum possible height (z_{\max}) where $x = 0$.
2. The maximum possible range (x_{\max}) where $z = 0$.

Step 2: Find z_0 (The Peak)

The maximum height is achieved by throwing the ball straight up ($\theta = 90^\circ$). Using energy conservation ($mgh = \frac{1}{2}mv^2$):
 $z_0 = v_0^2/(2g)$

Step 3: Find k (The Width)

The boundary touches the ground ($z = 0$) at the maximum possible range.

We know max range occurs at 45 degrees:
 $x_{\max} = v_0^2/g$

Now, substitute this point ($z = 0, x = v_0^2/g$) into the boundary equation:

$$0 = z_0 - kx_{\max}^2$$

$$0 = \frac{v_0^2}{2g} - k\left(\frac{v_0^2}{g}\right)^2$$

Step 4: Solve for k

$$k \frac{\frac{v_0^4}{g^2}}{\frac{v_0^2}{2g}} = \frac{v_0^2}{2g}$$

$$k = \frac{v_0^2}{2g} \cdot \frac{g^2}{v_0^4}$$

$$k = \frac{g}{2v_0^2}$$

Conclusion:

$$z_0 = v_0^2/(2g)$$

$$k = g/(2v_0^2)$$

Predicted Answer: $z_0 = v_0^2/2g, k = g/2v_0^2$
(Correct)

Figure 26. LLM answers before (left) and after (right) RL finetuning. Question adapted from IPhO 2012 Question 1 "Focus on sketches".

IPhO 2018 Q1

QUESTION

Calculate the dimensionless coefficient ξ for the power \mathcal{P} emitted in gravitational waves by a binary system.

Formula:

$$\mathcal{P} = \frac{G}{5c^5} \sum_{i,j} \left(\frac{d^3 Q_{ij}}{dt^3} \right)^2 = \xi \frac{G}{c^5} \mu^2 L^4 \Omega^6$$

Given Quadrupole Moments (where $k = 2\Omega$):

$$Q_{ii} = \frac{\mu L^2}{2} (a_i + b_i \cos kt) \quad \text{and} \quad Q_{ij} = \frac{\mu L^2}{2} c_{ij} \sin kt \quad (\text{for } i \neq j)$$

Parameters:

$$b_1 = 1, b_2 = -1, b_3 = 0; \quad c_{12} = c_{21} = 1 \quad (\text{others } 0).$$

The value of ξ is: **[A]** 1.6 **[B]** 3.2 **[C]** 6.4 **[D]** 12.8

BASE MODEL

Step 1: Compute Third Time Derivatives
We differentiate the quadrupole moments three times.

$$Q(t) \sim \frac{1}{2} \cos(2\Omega t)$$

$$\text{First deriv: } \sim \frac{1}{2} \cdot (2\Omega) = \Omega$$

ERROR: Failed chain rule (missing factor of 2)

$$\text{Second deriv: } \sim \Omega \cdot (\Omega) = \Omega^2$$

$$\text{Third deriv: } \sim \Omega^2 \cdot (2\Omega) = 2\Omega^3$$

Resulting Coefficient: $A = 2$

Step 2: Square and Sum

We square the coefficient found in Step 1.

$$\text{Square: } A^2 = 2^2 = 4$$

Summing over the non-zero components (diagonal and off-diagonal contribute equally):

$$\text{Sum} = 4 \text{ (from diagonal)} + 4 \text{ (from off-diagonal)} = 8$$

Step 3: Apply Formula

$$\mathcal{P} = \frac{1}{5} \cdot \text{Sum} \cdot (\text{constants})$$

$$\xi = \frac{32}{5} = 6.4$$

Predicted Answer: **[A]** 1.6 (Incorrect)

RL-FINETUNED MODEL

Step 1: Compute Third Time Derivatives
We apply the chain rule consistently for the third derivative.

$$Q(t) \sim \frac{1}{2} \cos(2\Omega t)$$

$$\text{First deriv: } \frac{1}{2} \cdot (-2\Omega) \sin(2\Omega t)$$

$$\text{Second deriv: } \frac{1}{2} \cdot (-4\Omega^2) \cos(2\Omega t)$$

$$\text{Third deriv: } \frac{1}{2} \cdot (8\Omega^3) \sin(2\Omega t)$$

Resulting Coefficient: $A = 4$

Step 2: Square and Sum

We square the coefficient found in Step 1.

$$\text{Square: } A^2 = 4^2 = 16$$

Summing over the components (using $\sin^2 + \cos^2 = 1$ identity):

$$\text{Sum} = 16 \text{ (from diagonal)} + 16 \text{ (from off-diagonal)} = 32$$

Step 3: Apply Formula

$$\mathcal{P} = \frac{1}{5} \cdot \text{Sum} \cdot (\text{constants})$$

$$\xi = \frac{32}{5} = 6.4$$

Predicted Answer: **[C]** 6.4 (Correct)

Figure 27. LLM answers before (left) and after (right) RL finetuning. Question adapted from IPhO 2018 Question 1 “LIGO-GW150914”.

IPhO 2013 Q1

QUESTION

A meteoroid from Comet Encke impacted Earth (the Maribo meteorite). Measurements show the meteorite formed shortly after the solar system's birth.

In its orbit around the Sun, the minimum and maximum distances between Comet Encke and the Sun are:

$$a_{\min} = 4.95 \times 10^{10} \text{ m} \quad \text{and} \quad a_{\max} = 6.16 \times 10^{11} \text{ m}$$

Calculate the orbital period t_{Encke} of Comet Encke. Express the final answer in SI units.

BASE MODEL

Step 1: Formula

Use Kepler's Third Law:
 $T^2 = (4\pi^2/GM) \cdot a^3$

Step 2: Calculate Semi-major Axis

$$a = (a_{\min} + a_{\max})/2 \\ a = (4.95 \times 10^{10} + 6.16 \times 10^{11})/2 \\ a = 33.275 \times 10^{10} \text{ m}$$

Step 3: Calculate Period

Using $\mu = 1.327 \times 10^{20}$:

$$T^2 = (33.275 \times 10^{10})^3 / 1.327 \times 10^{20} \\ T^2 = 3.7074 \times 10^{33} / 1.327 \times 10^{20}$$

ERROR: Arithmetic. $a^3 \approx 3.7 \times 10^{34}$ (Order of magnitude off).

$$T^2 \approx 2.794 \times 10^{13} \text{ s}^2 \\ T \approx 5.285 \times 10^6 \text{ s} \\ T \approx 61.37 \text{ days}$$

Final Answer:

61.37 days (Incorrect)

RL-FINETUNED MODEL

Step 1: Calculate Semi-major Axis

$$a = (a_{\min} + a_{\max})/2 \\ a = (4.95 \times 10^{10} + 61.6 \times 10^{10})/2 \\ a = 3.3275 \times 10^{11} \text{ m}$$

Step 2: Unit Conversion Strategy

Convert a to Astronomical Units (AU) to simplify Kepler's Law ($T^2 = a^3$ in years/AU).

$$1 \text{ AU} = 1.496 \times 10^{11} \text{ m} \\ a_{\text{au}} = 3.3275 \times 10^{11} / 1.496 \times 10^{11} \approx 2.225 \text{ AU}$$

Step 3: Apply Kepler's Law

$$T^2 = (2.225)^3 \approx 10.96 \\ T \approx \sqrt{10.96} \approx 3.31 \text{ years}$$

Step 4: Convert to SI

$$1 \text{ year} = 3.154 \times 10^7 \text{ seconds} \\ T = 3.31 \times 3.154 \times 10^7 \\ T \approx 1.04 \times 10^8 \text{ seconds}$$

Final Answer:

1.04 × 10⁸ s (Correct)

Figure 28. LLM answers before (left) and after (right) RL finetuning. Question adapted from IPhO 2013 Question 1 “The Maribo Meteorite”.